Jordan标准型(2)

矩阵论(二)——Jordan标准形
1. 线性变换的对角矩阵表示
1.1 特征值与特征向量
1.2 特征子空间
概念
性质
例题
1.3 线性变换矩阵的对角化
概念
例题
2 Jordan矩阵介绍
2.1 Jordan矩阵
2.2 Jordan标准形
计算步骤
推导过程
例题
3. 最小多项式
3.1 矩阵多项式
3.2 方阵的化零多项式
例题
3.3 最小多项式
概念
性质
1. 线性变换的对角矩阵表示
1.1 特征值与特征向量
1.  ∃ ϵ ∈ V n ( F ) 且 λ ∈ F , ϵ ≠ 0 , 使 T ( ϵ ) = λ ϵ \exist \epsilon \in V_n(F)且\lambda \in F,\epsilon \neq 0,使T(\epsilon) = \lambda \epsilon∃ϵ∈V 
n

 (F)且λ∈F,ϵ 


 =0,使T(ϵ)=λϵ,则λ \lambdaλ是T的特征值,向量ϵ \epsilonϵ是线性变换T对应于λ \lambdaλ的特征向量
证明:
ϵ = ( α 1 α 2 ⋯ α n ) X \epsilon = (\alpha_1 \quad \alpha_2 \quad \cdots \alpha_n) X
ϵ=(α 
1

 α 
2

 ⋯α 
n

 )X

T ( ϵ ) = ( α 1 α 2 ⋯ α n ) A X T(\epsilon) = (\alpha_1 \quad \alpha_2 \quad \cdots \alpha_n) AX
T(ϵ)=(α 
1

 α 
2

 ⋯α 
n

 )AX

因此 T ( ϵ ) = λ ϵ    ⟺    A X = λ X T(\epsilon) = \lambda \epsilon \iff AX = \lambda XT(ϵ)=λϵ⟺AX=λX

2.  线性变换T在基{ α 1 α 2 ⋯ α n } \{\alpha_1 \quad \alpha_2 \quad \cdots \alpha_n\}{α 
1

 α 
2

 ⋯α 
n

 }下矩阵为A,则A的特征值是T的特征值;若X是A的特征向量,则ϵ = ( α 1 α 2 ⋯ α n ) X \epsilon = (\alpha_1 \quad \alpha_2 \quad \cdots \alpha_n) Xϵ=(α 
1

 α 
2

 ⋯α 
n

 )X是T的特征向量
T的特征值由T决定,和基与变换矩阵的选择无关
不同特征值对应的特征向量必线性无关

1.2 特征子空间
概念
λ \lambdaλ是线性变换T的特征值,ϵ 1 ,   ϵ 2 ,   ⋯   ,   ϵ t \epsilon_1,\ \epsilon_2,\ \cdots,\ \epsilon_tϵ 
1

 , ϵ 
2

 , ⋯, ϵ 
t

 是T对应于λ \lambdaλ的特征向量的极大线性无关组,则称子空间V λ = L { ϵ 1 ,   ϵ 2 ,   ⋯   ,   ϵ t } V_\lambda = L\{\epsilon_1,\ \epsilon_2,\ \cdots,\ \epsilon_t\}V 
λ

 =L{ϵ 
1

 , ϵ 
2

 , ⋯, ϵ 
t

 }为T关于λ \lambdaλ的特征子空间
∀ α ∈ V λ ,   α ≠ 0 ,   α \forall \alpha \in V_\lambda,\ \alpha \neq 0,\ \alpha∀α∈V 
λ

 , α 


 =0, α就是T关于λ \lambdaλ的特征向量,V λ = N ( T − λ I ) V_\lambda=N(T - \lambda I)V 
λ

 =N(T−λI)
若T有s个互异的特征值,则它们就对应s个特征子空间
奇异矩阵: 该矩阵的秩不是满秩

性质
λ 1 ,   λ 2 ,   ⋯   ,   λ s 是 V n ( F ) \lambda_1,\ \lambda_2,\ \cdots,\ \lambda_s是V_n(F)λ 
1

 , λ 
2

 , ⋯, λ 
s

 是V 
n

 (F)上线性变换T的s个互异的特征值,V λ i V_{\lambda_i}V 
λ 
i

 

 是λ i \lambda_iλ 
i

 的特征子空间,则
V λ i \quad V_{\lambda_i}V 
λ 
i

 

 是T的不变子空间
λ i ≠ λ j 时 , V λ i ∩ V λ j = { 0 } \quad \lambda_i \neq \lambda_j时,V_{\lambda_i} \cap V_{\lambda_j} = \{0\}λ 
i

  


 =λ 
j

 时,V 
λ 
i

 

 ∩V 
λ 
j

 

 ={0}
若 λ i \quad 若\lambda_i若λ 
i

 是T的k重特征值,则d i m V λ i ≤ k dimV_{\lambda_i} \leq kdimV 
λ 
i

 

 ≤k

V λ 1 + V λ 2 + ⋯ + V λ s = V λ 1 ⨁ V λ 2 ⨁ ⋯ ⨁ V λ s ⊂ V n ( F ) V_{\lambda_1} + V_{\lambda_2} + \cdots + V_{\lambda_s} = V_{\lambda_1} \bigoplus V_{\lambda_2} \bigoplus \cdots \bigoplus V_{\lambda_s} \subset V_n(F)V 
λ 
1

 

 +V 
λ 
2

 

 +⋯+V 
λ 
s

 

 =V 
λ 
1

 

 ⨁V 
λ 
2

 

 ⨁⋯⨁V 
λ 
s

 

 ⊂V 
n

 (F)

∑ i = 1 s d i m V λ i ≤ d i m V n ( F ) = n \sum^s_{i = 1} dimV_{\lambda_i} \leq dimV_n(F) = n∑ 
i=1
s

 dimV 
λ 
i

 

 ≤dimV 
n

 (F)=n

∑ i = 1 s d i m V λ i = n ⇒ V λ 1 ⨁ V λ 2 ⨁ ⋯ ⨁ V λ s = V n ( F ) \sum^s_{i = 1} dimV_{\lambda_i} = n \Rightarrow V_{\lambda_1} \bigoplus V_{\lambda_2} \bigoplus \cdots \bigoplus V_{\lambda_s} = V_n(F)∑ 
i=1
s

 dimV 
λ 
i

 

 =n⇒V 
λ 
1

 

 ⨁V 
λ 
2

 

 ⨁⋯⨁V 
λ 
s

 

 =V 
n

 (F)

例题
例题一

例题二

1.3 线性变换矩阵的对角化
概念
线性变换T有对角矩阵    ⟺    \iff⟺ T有n个线性无关的特征向量    ⟺    \iff⟺ V λ 1 ⨁ V λ 2 ⨁ ⋯ ⨁ V λ s = V n ( F ) V_{\lambda_1} \bigoplus V_{\lambda_2} \bigoplus \cdots \bigoplus V_{\lambda_s} = V_n(F)V 
λ 
1

 

 ⨁V 
λ 
2

 

 ⨁⋯⨁V 
λ 
s

 

 =V 
n

 (F)    ⟺    \iff⟺ m ( λ ) = ( λ − λ 1 ) ( λ − λ 2 ) ⋯ ( λ − λ s ) m(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_s)m(λ)=(λ−λ 
1

 )(λ−λ 
2

 )⋯(λ−λ 
s

 )
V λ 1 ⨁ V λ 2 ⨁ ⋯ ⨁ V λ s = V n ( F ) V_{\lambda_1} \bigoplus V_{\lambda_2} \bigoplus \cdots \bigoplus V_{\lambda_s} = V_n(F)V 
λ 
1

 

 ⨁V 
λ 
2

 

 ⨁⋯⨁V 
λ 
s

 

 =V 
n

 (F)    ⟺    \iff⟺ λ i 是 T 的 k i 重 特 征 值 , 必 有 d i m V λ i = k i ,   i = 1 ,   2 ,   ⋯   ,   n \lambda_i是T的k_i重特征值,必有dimV_{\lambda_i} = k_i,\ i = 1,\ 2,\ \cdots,\ nλ 
i

 是T的k 
i

 重特征值,必有dimV 
λ 
i

 

 =k 
i

 , i=1, 2, ⋯, n
若λ i \lambda_iλ 
i

 为T的单特征值,则必有d i m V λ i = 1 dimV_{\lambda_i} = 1dimV 
λ 
i

 

 =1
线性变换T有n个互异的特征值λ 1 ,   λ 2 ,   ⋯   ,   λ n \lambda_1,\ \lambda_2,\ \cdots,\ \lambda_nλ 
1

 , λ 
2

 , ⋯, λ 
n

  ⇒ \Rightarrow⇒ V λ 1 ⨁ V λ 2 ⨁ ⋯ ⨁ V λ s = V n ( F ) V_{\lambda_1} \bigoplus V_{\lambda_2} \bigoplus \cdots \bigoplus V_{\lambda_s} = V_n(F)V 
λ 
1

 

 ⨁V 
λ 
2

 

 ⨁⋯⨁V 
λ 
s

 

 =V 
n

 (F)
V n ( F ) V_n(F)V 
n

 (F)上线性变换有对角矩阵表示    ⟺    \iff⟺ V n ( F ) V_n(F)V 
n

 (F)可分解为T的一维不变子空间的直和

例题
例题一

例题二

2 Jordan矩阵介绍
2.1 Jordan矩阵
J ( λ ) = [ λ 1 λ 1 ⋱ 1 λ ] J(\lambda) =
⎡⎣⎢⎢⎢⎢⎢λ1λ1⋱1λ⎤⎦⎥⎥⎥⎥⎥
[
𝜆
1
𝜆
1

1
𝜆
]
J(λ)= 





  
λ

  
1
λ

  
1


  
1
λ

  





 

的r阶方阵称为一个r阶Jordan块。由若干个Jordan块J i ( λ i ) J_i(\lambda_i)J 
i

 (λ 
i

 )构成的准对角矩阵
J = [ J 1 ( λ 1 ) J 2 ( λ 2 ) ⋱ J m ( λ m ) ] J =
⎡⎣⎢⎢⎢⎢⎢J1(λ1)J2(λ2)⋱Jm(λm)⎤⎦⎥⎥⎥⎥⎥
[
𝐽
1
(
𝜆
1
)
𝐽
2
(
𝜆
2
)

𝐽
𝑚
(
𝜆
𝑚
)
]
J= 





  

1

 (λ 
1

 )

  

2

 (λ 
2

 )

  


  

m

 (λ 
m

 )

  





 

称为Jordan矩阵
Jordan块都是一阶的Jordan矩阵就是对角矩阵

在复数域C上,每个n阶方阵A都相似于一个Jordan矩阵,即存在可逆矩阵P,使
P − 1 A P = J A = [ J 1 ( λ 1 ) J 2 ( λ 2 ) ⋱ J s ( λ s ) ] P^{-1}AP = J_A =
⎡⎣⎢⎢⎢⎢⎢J1(λ1)J2(λ2)⋱Js(λs)⎤⎦⎥⎥⎥⎥⎥
[
𝐽
1
(
𝜆
1
)
𝐽
2
(
𝜆
2
)

𝐽
𝑠
(
𝜆
𝑠
)
]

−1
 AP=J 
A

 = 





  

1

 (λ 
1

 )

  

2

 (λ 
2

 )

  


  

s

 (λ 
s

 )

  





 

其中
J i ( λ i ) = [ J i 1 ( λ i ) J i 2 ( λ i ) ⋱ J i t i ( λ i ) ] ∈ C k i ∗ k i J_i(\lambda_i) =
⎡⎣⎢⎢⎢⎢⎢Ji1(λi)Ji2(λi)⋱Jiti(λi)⎤⎦⎥⎥⎥⎥⎥
[
𝐽
𝑖
1
(
𝜆
𝑖
)
𝐽
𝑖
2
(
𝜆
𝑖
)

𝐽
𝑖
𝑡
𝑖
(
𝜆
𝑖
)
]
\in C^{k_i * k_i}

i

 (λ 
i

 )= 





  


1

 

 (λ 
i

 )

  


2

 

 (λ 
i

 )

  


  



i

 

 

 (λ 
i

 )

  





 ∈C 

i

 ∗k 
i

 
 

J i j ( λ i ) 为 n j J_{ij}(\lambda_i)为n_jJ 
ij

 (λ 
i

 )为n 
j

 阶Jordan块,∑ j = 1 t i n j = k i \sum^{t_i}_{j = 1} n_j = k_i∑ 
j=1

i

 

 n 
j

 =k 
i

 . J i ( λ i ) 是 k i ∗ k i J_i(\lambda_i)是k_i * k_iJ 
i

 (λ 
i

 )是k 
i

 ∗k 
i

 阶Jordan矩阵,∑ i = 1 s k i = n \sum^s_{i = 1} k_i = n∑ 
i=1
s

 k 
i

 =n
若不计较Jordan的排列次序,则每个方阵的Jordan标准形J A J_AJ 
A

 唯一

2.2 Jordan标准形
计算步骤
求A的特征多项式
∣ λ I − A ∣ = ( λ − λ 1 ) k 1 ( λ − λ 2 ) k 2 ⋯ ( λ − λ s ) k s |\lambda I - A| = (\lambda - \lambda_1) ^ {k_1} (\lambda - \lambda_2) ^ {k_2} \cdots (\lambda - \lambda_s) ^ {k_s}
∣λI−A∣=(λ−λ 
1

 ) 

1

 
 (λ−λ 
2

 ) 

2

 
 ⋯(λ−λ 
s

 ) 

s

 
 
代数重数k i k_ik 
i

 决定Jordan矩阵J i ( λ i ) J_i(\lambda_i)J 
i

 (λ 
i

 )的阶数为k i k_ik 
i

 
对λ i \lambda_iλ 
i

 ,由( A − λ i I ) X = 0 (A - \lambda_i I)X = 0(A−λ 
i

 I)X=0,求A的线性无关的特征向量α 1 ,   α 2 ,   ⋯   ,   α t i \alpha_1,\ \alpha_2,\ \cdots,\ \alpha_{t_i}α 
1

 , α 
2

 , ⋯, α 

i

 

 。λ i \lambda_iλ 
i

 的几何重数d i m V λ i = t i dimV_{\lambda_i} = t_idimV 
λ 
i

 

 =t 
i

 决定J i ( λ i ) J_i(\lambda_i)J 
i

 (λ 
i

 )中有t i t_it 
i

 个Jordan块
若λ i \lambda_iλ 
i

 的代数重数(k i k_ik 
i

 )等于几何重数(d i m V λ i dimV_{\lambda_i}dimV 
λ 
i

 

 ): k i = d i m V λ i k_i = dimV_{\lambda_i}k 
i

 =dimV 
λ 
i

 

 ,λ i \lambda_iλ 
i

 对应的Jordan矩阵为k i k_ik 
i

 阶对角矩阵;若d i m V λ i = t i < k i dim V_{\lambda_i} = t_i < k_idimV 
λ 
i

 

 =t 
i

 <k 
i

 ,则在V λ i V_{\lambda_i}V 
λ 
i

 

 中选择适当的特征向量α i \alpha_iα 
i

 ,求Jordan链α i ,   β 2 ,   ⋯   ,   β n i \alpha_i,\ \beta_2,\ \cdots,\ \beta_{n_i}α 
i

 , β 
2

 , ⋯, β 

i

 

 ,确定J i ( λ i ) J_i(\lambda_i)J 
i

 (λ 
i

 )中Jordan块J i j ( λ i ) J_{ij}(\lambda_i)J 
ij

 (λ 
i

 )的阶数n i n_in 
i

 ,从而得到J A J_AJ 
A

 的结构
所有Jordan链构成矩阵P,必有P − 1 A P = J A P^{-1}AP = J_AP 
−1
 AP=J 
A

 
推导过程
设A的特征多项式为
∣ λ I − A ∣ = ( λ − λ 1 ) k 1 ( λ − λ 2 ) k 2 ⋯ ( λ − λ s ) k s |\lambda I - A| = (\lambda - \lambda_1) ^ {k_1} (\lambda - \lambda_2) ^ {k_2} \cdots (\lambda - \lambda_s)^{k_s}
∣λI−A∣=(λ−λ 
1

 ) 

1

 
 (λ−λ 
2

 ) 

2

 
 ⋯(λ−λ 
s

 ) 

s

 
 
其中λ i 是 A 的 k i 重 特 征 值 , ∑ i = 1 s k i = n ,   λ 1 ,   λ 2 ,   ⋯   ,   λ s 互 异 \lambda_i是A的k_i重特征值,\sum^s_{i = 1} k_i = n,\ \lambda_1,\ \lambda_2,\ \cdots,\ \lambda_s互异λ 
i

 是A的k 
i

 重特征值,∑ 
i=1
s

 k 
i

 =n, λ 
1

 , λ 
2

 , ⋯, λ 
s

 互异
⇒ \Rightarrow⇒
J A = [ J 1 ( λ 1 ) J 2 ( λ 2 ) ⋱ J s ( λ s ) ] ( 2.5 ) J_A =
⎡⎣⎢⎢⎢⎢⎢J1(λ1)J2(λ2)⋱Js(λs)⎤⎦⎥⎥⎥⎥⎥
[
𝐽
1
(
𝜆
1
)
𝐽
2
(
𝜆
2
)

𝐽
𝑠
(
𝜆
𝑠
)
]
\qquad \qquad \qquad (2.5)

A

 = 





  

1

 (λ 
1

 )

  

2

 (λ 
2

 )

  


  

s

 (λ 
s

 )

  





 (2.5)

J i ( λ i ) J_i(\lambda_i)J 
i

 (λ 
i

 )是主对角线元素为λ i \lambda_iλ 
i

 的k i k_ik 
i

 阶Jordan矩阵
令P = ( p 1 ,   p 2 ,   ⋯   ,   p s ) ,   p i ∈ C n ∗ k i ,   i = 1 ,   2 ,   ⋯   ,   s ,   A P = P J A P = (p_1,\ p_2,\ \cdots,\ p_s),\ p_i \in C ^ {n * k_i},\ i = 1,\ 2,\ \cdots,\ s,\ AP = PJ_AP=(p 
1

 , p 
2

 , ⋯, p 
s

 ), p 
i

 ∈C 
n∗k 
i

 
 , i=1, 2, ⋯, s, AP=PJ 
A

 可表示为:
A ( p 1 p 2 ⋯ p s ) = ( p 1 p 2 ⋯ p s ) [ J 1 ( λ 1 ) J 2 ( λ 2 ) ⋱ J s ( λ s ) ] A(p_1 \quad p_2 \quad \cdots \quad p_s) = (p_1 \quad p_2 \quad \cdots \quad p_s)
⎡⎣⎢⎢⎢⎢⎢J1(λ1)J2(λ2)⋱Js(λs)⎤⎦⎥⎥⎥⎥⎥
[
𝐽
1
(
𝜆
1
)
𝐽
2
(
𝜆
2
)

𝐽
𝑠
(
𝜆
𝑠
)
]
A(p 
1

 p 
2

 ⋯p 
s

 )=(p 
1

 p 
2

 ⋯p 
s

 ) 





  

1

 (λ 
1

 )

  

2

 (λ 
2

 )

  


  

s

 (λ 
s

 )

  





 

⇒ \Rightarrow⇒
( A p 1 A p 2 ⋯ A p s ) = ( p 1 J 1 ( λ 1 ) p 2 J 2 ( λ 2 ) ⋯ p s J s ( λ s ) ) (A p_1 \quad A p_2 \quad \cdots \quad A p_s) = (p_1 J_1(\lambda_1) \quad p_2 J_2(\lambda_2) \quad \cdots \quad p_s J_s(\lambda_s))
(Ap 
1

 Ap 
2

 ⋯Ap 
s

 )=(p 
1

 J 
1

 (λ 
1

 )p 
2

 J 
2

 (λ 
2

 )⋯p 
s

 J 
s

 (λ 
s

 ))

⇒ \Rightarrow⇒
A p i = p i J i ( λ i ) , i = 1 ,   2 ,   ⋯   ,   s ( 2.6 ) A p_i = p_i J_i(\lambda_i), \quad i = 1,\ 2,\ \cdots,\ s \qquad \qquad \qquad (2.6)
Ap 
i

 =p 
i

 J 
i

 (λ 
i

 ),i=1, 2, ⋯, s(2.6)

取A p 1 = p 1 J 1 ( λ 1 ) A p_1 = p_1 J_1(\lambda_1)Ap 
1

 =p 
1

 J 
1

 (λ 
1

 )为代表来分析,设
J 1 ( λ 1 ) = [ J 11 ( λ 1 ) J 12 ( λ 1 ) ⋱ J 1 t ( λ 1 ) ] J_1(\lambda_1) =
⎡⎣⎢⎢⎢⎢⎢J11(λ1)J12(λ1)⋱J1t(λ1)⎤⎦⎥⎥⎥⎥⎥
[
𝐽
11
(
𝜆
1
)
𝐽
12
(
𝜆
1
)

𝐽
1
𝑡
(
𝜆
1

]

1

 (λ 
1

 )= 





  

11

 (λ 
1

 )

  

12

 (λ 
1

 )

  


  

1t

 (λ 
1

 )

  





 

其中J 1 i 为 n i J_{1i}为n_iJ 
1i

 为n 
i

 阶Jordan块,∑ i = 1 t n i = k 1 \sum^t_{i =1} n_i = k_1∑ 
i=1
t

 n 
i

 =k 
1

 
⇒ \Rightarrow⇒
J 1 i ( λ 1 ) = [ λ 1 1 λ 1 1 ⋱ ⋱ 1 λ 1 ] n i ∗ n i ( 2.7 ) J_{1i}(\lambda_1) =
⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢λ11λ11⋱⋱1λ1⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥
[
𝜆
1
1
𝜆
1
1


1
𝜆
1
]
_{n_i * n_i} \qquad \qquad \qquad (2.7)

1i

 (λ 
1

 )= 







  
λ 
1

 

  
1
λ 
1

 

  
1

  



  
1
λ 
1

 

  







  

i

 ∗n 
i

 

 (2.7)

把p 1 p_1p 
1

 按n 1 列 ,   n 2 列 ,   ⋯   ,   n t 列 分 块 , p 1 = ( p 1 ( 1 ) p 2 ( 1 ) ⋯ p t ( 1 ) ) n_1列,\ n_2列,\ \cdots,\ n_t列分块,\quad p_1 = (p^{(1)}_1 \quad p^{(1)}_2 \quad \cdots p^{(1)}_t)n 
1

 列, n 
2

 列, ⋯, n 
t

 列分块,p 
1

 =(p 
1
(1)

 p 
2
(1)

 ⋯p 
t
(1)

 )
由等式2.6有
A p j ( 1 ) = p 1 ( 1 ) J 1 j ( λ 1 ) , j = 1 ,   2 ,   ⋯   ,   t ( 2.8 ) A p^{(1)}_j = p^{(1)}_1 J_{1j}(\lambda_1), \quad j = 1,\ 2,\ \cdots,\ t \qquad \qquad \qquad (2.8)
Ap 
j
(1)

 =p 
1
(1)

 J 
1j

 (λ 
1

 ),j=1, 2, ⋯, t(2.8)

设p j ( 1 ) = ( α 1 β 2 ⋯ β n j ) p^{(1)}_j = (\alpha_1 \quad \beta_2 \quad \cdots \quad \beta_{n_j})p 
j
(1)

 =(α 
1

 β 
2

 ⋯β 

j

 

 ),结合等式2.7,等式2.8可化为
A ( α 1 β 2 ⋯ β n j ) = ( α 1 β 2 ⋯ β n j ) [ λ 1 1 λ 1 1 ⋱ ⋱ 1 λ 1 ] A(\alpha_1 \quad \beta_2 \quad \cdots \beta_{n_j}) = (\alpha_1 \quad \beta_2 \cdots \beta_{n_j})
⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢λ11λ11⋱⋱1λ1⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥
[
𝜆
1
1
𝜆
1
1


1
𝜆
1
]
A(α 
1

 β 
2

 ⋯β 

j

 

 )=(α 
1

 β 
2

 ⋯β 

j

 

 ) 







  
λ 
1

 

  
1
λ 
1

 

  
1

  



  
1
λ 
1

 

  

  







 

该矩阵等式等价于
{ ( A − λ 1 I ) α 1 = 0 ( A − λ 1 I ) β 2 = α 1 ( A − λ 1 I ) β 3 = β 2 ⋮ ( A − λ 1 I ) β n j = β n j − 1 ( 2.9 )
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪(A−λ1I)α1=0(A−λ1I)β2=α1(A−λ1I)β3=β2⋮(A−λ1I)βnj=βnj−1
{
(
𝐴

𝜆
1
𝐼
)
𝛼
1
=
0
(
𝐴

𝜆
1
𝐼
)
𝛽
2
=
𝛼
1
(
𝐴

𝜆
1
𝐼
)
𝛽
3
=
𝛽
2

(
𝐴

𝜆
1
𝐼
)
𝛽
𝑛
𝑗
=
𝛽
𝑛
𝑗

1
\qquad \qquad \qquad (2.9)
















  
(A−λ 
1

 I)α 
1

 =0
(A−λ 
1

 I)β 
2

 =α 
1

 
(A−λ 
1

 I)β 
3

 =β 
2

 

(A−λ 
1

 I)β 

j

 

 =β 

j−1

 

 

 (2.9)

从等式2.9中求得一组向量{ α 1 ,   β 2 ,   ⋯   ,   β n j } \{\alpha_1,\ \beta_2,\ \cdots,\ \beta_{n_j}\}{α 
1

 , β 
2

 , ⋯, β 

j

 

 },称为Jordan链。链中第一个向量α 1 \alpha_1α 
1

 是A关于λ 1 \lambda_1λ 
1

 的特征向量,β 2 ,   ⋯   ,   β n j \beta_2,\ \cdots,\ \beta_{n_j}β 
2

 , ⋯, β 

j

 

 称为广义特征向量。它的长度n j n_jn 
j

 就是J 1 j ( λ 1 ) J_{1j}(\lambda_1)J 
1j

 (λ 
1

 )的阶数
等式2.8 ⇒ n u m ( J 1 j ( λ 1 ) ) = n u m ( J o r d a n 链 ) = n u m ( α ) \Rightarrow num(J_{1j}(\lambda_1)) = num(Jordan链) = num(\alpha)⇒num(J 
1j

 (λ 
1

 ))=num(Jordan链)=num(α),num表示总数量。用文字可以表述为:
由等式2.8可知,J 1 ( λ 1 ) J_1(\lambda_1)J 
1

 (λ 
1

 )有多少个Jordan块J 1 j ( λ 1 ) J_{1j}(\lambda_1)J 
1j

 (λ 
1

 ),就有多少条Jordan链,也就会有多少个线性无关的特征向量

例题
例题一

例题二

例题三

3. 最小多项式
3.1 矩阵多项式
A ∈ F n × n ,   a i ∈ F ,   g ( λ ) = a m λ m + a m − 1 λ m − 1 + ⋯ + a 1 λ + a 0 A \in F^{n \times n},\ a_i \in F,\ g(\lambda) = a_m \lambda^m + a_{m - 1} \lambda^{m -1} + \cdots +a_1 \lambda + a_0A∈F 
n×n
 , a 
i

 ∈F, g(λ)=a 
m

 λ 
m
 +a 
m−1

 λ 
m−1
 +⋯+a 
1

 λ+a 
0

 是一个多项式,则称矩阵g ( A ) = a m A m + a m − 1 A m − 1 + ⋯ + a 1 A + a 0 I g(A) = a_m A^m + a_{m - 1} A^{m - 1} + \cdots + a_1 A + a_0 Ig(A)=a 
m

 A 
m
 +a 
m−1

 A 
m−1
 +⋯+a 
1

 A+a 
0

 I为A的矩阵多项式。

A ∈ F n × n A \in F ^ {n \times n}A∈F 
n×n
 ,g(A)是A的矩阵多项式,则:

λ 0 \lambda_0λ 
0

 是A的特征值 ⇒ \Rightarrow⇒ g ( λ 0 ) g(\lambda_0)g(λ 
0

 )是g(A)的特征值
P − 1 A P = B ⇒ P − 1 g ( A ) P = g ( B ) P^{-1}AP = B \Rightarrow P^{-1} g(A) P = g(B)P 
−1
 AP=B⇒P 
−1
 g(A)P=g(B)
A为准对角矩阵 ⇒ \Rightarrow⇒ g(A)也是准对角矩阵且
A = [ A 1 A 2 ⋯ A k ] , A i 为 方 子 块 ⇒ g ( A ) = [ g ( A 1 ) g ( A 2 ) ⋯ g ( A k ) ] A =
⎡⎣⎢⎢⎢A1A2⋯Ak⎤⎦⎥⎥⎥
[
𝐴
1
𝐴
2

𝐴
𝑘
]
,A_i为方子块 \Rightarrow g(A) =
⎡⎣⎢⎢⎢⎢g(A1)g(A2)⋯g(Ak)⎤⎦⎥⎥⎥⎥
[
𝑔
(
𝐴
1
)
𝑔
(
𝐴
2
)

𝑔
(
𝐴
𝑘
)
]
A= 





  

1

 

  

2

 

  


  

k

 

  





 ,A 
i

 为方子块⇒g(A)= 





  
g(A 
1

 )

  
g(A 
2

 )

  


  
g(A 
k

 )

  





 
方阵g(A)计算
已知方阵A和多项式g ( λ ) = a m λ m + a m − 1 λ m − 1 + ⋯ + a 1 λ + a 0 g(\lambda) = a_m \lambda^m + a_{m - 1} \lambda ^ {m - 1} + \cdots + a_1 \lambda + a_0g(λ)=a 
m

 λ 
m
 +a 
m−1

 λ 
m−1
 +⋯+a 
1

 λ+a 
0

 
当m ≥ r m \geq rm≥r时,
g ( J ( λ ) ) = ∑ i = 0 r − 1 g ( i ) ( λ ) i ! U i = [ g ( λ ) g ′ ( λ ) ⋯ g ( r − 1 ) ( λ ) ( r − 1 ) ! g ( λ ) ⋱ ⋮ ⋱ g ′ ( λ ) g ( λ ) ] g(J(\lambda)) = \sum^{r - 1}_{i=0}\frac{g^{(i)}(\lambda)}{i!}U^i =
⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢g(λ)g′(λ)g(λ)⋯⋱⋱g(r−1)(λ)(r−1)!⋮g′(λ)g(λ)⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥
[
𝑔
(
𝜆
)
𝑔

(
𝜆
)

𝑔
(
𝑟

1
)
(
𝜆
)
(
𝑟

1
)
!
𝑔
(
𝜆
)



𝑔

(
𝜆
)
𝑔
(
𝜆
)
]
g(J(λ))= 
i=0

r−1

  
i!

(i)
 (λ)

 U 
i
 = 







  
g(λ)

  


 (λ)
g(λ)

  




  
(r−1)!

(r−1)(λ)
 

 



 (λ)
g(λ)

  







 

当m < r m < rm<r时,
g ( J ( λ ) ) = [ g ( λ ) g ′ ( λ ) ⋯ g m ( λ ) m ! 0 ⋯ 0 g ( λ ) ⋱ 0 ⋱ g ( m ) ( λ ) m ! ⋱ ⋮ g ′ ( λ ) g ( λ ) ] g(J(\lambda)) =
⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢g(λ)g′(λ)g(λ)⋯gm(λ)m!⋱⋱0⋱⋯00g(m)(λ)m!⋮g′(λ)g(λ)⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
[
𝑔
(
𝜆
)
𝑔

(
𝜆
)

𝑔
𝑚
(
𝜆
)
𝑚
!
0

0
𝑔
(
𝜆
)

0

𝑔
(
𝑚
)
(
𝜆
)
𝑚
!


𝑔

(
𝜆
)
𝑔
(
𝜆
)
]
g(J(λ))= 











  
g(λ)

  


 (λ)
g(λ)

  


  
m!

m
 (λ)

 



  
0


  


  
0
0
m!

(m)
 (λ)

 



 (λ)
g(λ)

  











 

其中r表示J ( λ ) J(\lambda)J(λ)的阶数

3.2 方阵的化零多项式
化零多项式: n阶方阵A,∃ 多 项 式 g ( λ ) , 使 g ( A ) = 0 \exists 多项式g(\lambda),使g(A) = 0∃多项式g(λ),使g(A)=0
Cayley-Hamilton: f ( λ ) = ∣ λ I − A ∣ = λ n + a n − 1 λ n − 1 + ⋯ + a 1 λ + a 0 ⇒ f ( A ) = 0 f(\lambda) = |\lambda I - A| = \lambda^n + a_{n - 1} \lambda^{n - 1} + \cdots + a_1 \lambda + a_0 \Rightarrow f(A) = 0f(λ)=∣λI−A∣=λ 
n
 +a 
n−1

 λ 
n−1
 +⋯+a 
1

 λ+a 
0

 ⇒f(A)=0,即方阵A的特征多项式就是A的化零多项式

f ( λ ) f(\lambda)f(λ)为n次多项式,f ( A ) = 0 f(A) = 0f(A)=0使得A n A^nA 
n
 可以表示为A k ( k < n ) A^k(k < n)A 
k
 (k<n)的幂次项的组合:
A n = − ( a n − 1 A n − 1 + a n − 2 A n − 2 + ⋯ + a 1 A + a 0 I ) A^n = -(a_{n - 1}A^{n - 1} + a_{n - 2}A^{n - 2} + \cdots + a_1A + a_0I)

n
 =−(a 
n−1

 A 
n−1
 +a 
n−2

 A 
n−2
 +⋯+a 
1

 A+a 
0

 I)


例题
例题一

例题二
A = [ 1 0 1 − 1 ] , f ( λ ) = ∣ λ I − A ∣ = λ 2 − 1 , g ( λ ) = λ 6 + 2 λ 5 − 4 λ 3 + λ 2 − 5 A =
[110−1]
[
1
0
1

1
]
,f(\lambda) = |\lambda I - A| = \lambda^2 - 1,g(\lambda) = \lambda^6 + 2 \lambda^5 -4 \lambda^3 + \lambda^2 - 5A=[ 
1
1

  
0
−1

 ],f(λ)=∣λI−A∣=λ 
2
 −1,g(λ)=λ 
6
 +2λ 
5
 −4λ 
3
 +λ 
2
 −5,求g(A)
解: g ( λ ) = ( λ 2 − 1 ) ( λ 4 + 2 λ 3 + λ 2 − 2 λ + 2 ) + ( − 2 λ − 3 ) ⇒ g ( A ) = − 2 A − 3 g(\lambda) = (\lambda^2 - 1)(\lambda^4 + 2 \lambda^3 + \lambda^2 - 2 \lambda + 2) + (-2 \lambda - 3) \Rightarrow g(A) = -2 A - 3g(λ)=(λ 
2
 −1)(λ 
4
 +2λ 
3
 +λ 
2
 −2λ+2)+(−2λ−3)⇒g(A)=−2A−3

3.3 最小多项式
概念
若A ∈ C n × n A \in C^{n \times n}A∈C 
n×n
 ,则A有无数个化零多项式。事实上,f ( λ ) = ∣ λ I − A ∣ , 有 f ( A ) = 0 f(\lambda) = |\lambda I - A|,有f(A) = 0f(λ)=∣λI−A∣,有f(A)=0
且∀ g ( λ ) = h ( λ )   f ( λ ) \forall g(\lambda) = h(\lambda) \ f(\lambda)∀g(λ)=h(λ) f(λ),均有g ( A ) = h ( A ) ⋅ f ( A ) g(A) = h(A) \cdot f(A)g(A)=h(A)⋅f(A)

最小多项式: n阶方阵A的所有化零多项式中,次数最低且首系数为1的多项式称为A的最小多项式,记为m ( λ ) m(\lambda)m(λ)

性质
T的特征多项式f ( λ ) f(\lambda)f(λ)与最小多项式m ( λ ) m(\lambda)m(λ)有相同的根(重数不计),即
f ( λ ) = ∣ λ I − A ∣ = ( λ − λ 1 ) r 1 ( λ − λ 2 ) r 2 ⋯ ( λ − λ s ) r s f(\lambda) = |\lambda I - A| = (\lambda - \lambda_1)^{r_1}(\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_s)^{r_s}
f(λ)=∣λI−A∣=(λ−λ 
1

 ) 

1

 
 (λ−λ 
2

 ) 

2

 
 ⋯(λ−λ 
s

 ) 

s

 
 

⇒ \Rightarrow⇒ m ( λ ) = ( λ − λ 1 ) t 1 ( λ − λ 2 ) t 2 ⋯ ( λ − λ s ) t s , 1 ≤ t i ≤ r i , i = 1 ,   2 ,   ⋯   ,   s m(\lambda) = (\lambda - \lambda_1)^{t_1}(\lambda - \lambda_2)^{t_2} \cdots (\lambda - \lambda_s)^{t_s},1 \leq t_i \leq r_i,i = 1,\ 2,\ \cdots,\ sm(λ)=(λ−λ 
1

 ) 

1

 
 (λ−λ 
2

 ) 

2

 
 ⋯(λ−λ 
s

 ) 

s

 
 ,1≤t 
i

 ≤r 
i

 ,i=1, 2, ⋯, s

设T的特征多项式为
f ( λ ) = ( λ − λ 1 ) r 1 ( λ − λ 2 ) r 2 ⋯ ( λ − λ s ) r s , f(\lambda) = (\lambda - \lambda_1)^{r_1}(\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_s)^{r_s},
f(λ)=(λ−λ 
1

 ) 

1

 
 (λ−λ 
2

 ) 

2

 
 ⋯(λ−λ 
s

 ) 

s

 
 ,

T的Jordan标准形中关于特征值λ i \lambda_iλ 
i

 的Jordan块的最高阶数为n i ‾ \overline{n_i} 

i

 

 ,则T的最小多项式
m ( λ ) = ( λ − λ 1 ) n 1 ‾ ( λ − λ 2 ) n 2 ‾ ⋯ ( λ − λ s ) n s ‾ m(\lambda) = (\lambda - \lambda_1)^{\overline{n_1}}(\lambda - \lambda_2)^{\overline{n_2}} \cdots (\lambda - \lambda_s)^{\overline{n_s}}
m(λ)=(λ−λ 
1

 ) 

1

 

 
 (λ−λ 
2

 ) 

2

 

 
 ⋯(λ−λ 
s

 ) 

s

 

 
 


线性变换T可对角化    ⟺    \iff⟺ T有n个线性无关的特征向量    ⟺    \iff⟺ m ( λ ) = ( λ − λ 1 ) ( λ − λ 2 ) ⋯ ( λ − λ s ) m(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_s)m(λ)=(λ−λ 
1

 )(λ−λ 
2

 )⋯(λ−λ 
s

 )


设A ∈ C n × n A \in C ^ {n \times n}A∈C 
n×n
 ,A的最小多项式m ( λ ) m(\lambda)m(λ),特征多项式f ( λ ) f(\lambda)f(λ),任一化零多项式ψ ( λ ) \psi (\lambda)ψ(λ),则

m ( λ ) ∣ ψ ( λ ) , 即 ψ ( λ ) = h ( λ ) ⋅ m ( λ ) m(\lambda) | \psi (\lambda),即\psi (\lambda) = h(\lambda) \cdot m(\lambda)m(λ)∣ψ(λ),即ψ(λ)=h(λ)⋅m(λ),m ( λ ) m(\lambda)m(λ)整除T的一切化零多项式
m ( λ ) m(\lambda)m(λ)的零点是A的特征值,反之,A的特征值是m ( λ ) m(\lambda)m(λ)的零点
m ( λ ) m(\lambda)m(λ)是唯一的
相似矩阵具有相同的最小多项式
∧ = [ λ 1 λ 2 ⋱ λ s ] \wedge =
⎡⎣⎢⎢⎢⎢⎢λ1λ2⋱λs⎤⎦⎥⎥⎥⎥⎥
[
𝜆
1
𝜆
2

𝜆
𝑠
]
∧= 





  
λ 
1

 

  
λ 
2

 

  


  
λ 
s

 

  





 ,若λ 1 ,   ⋯   ,   λ s \lambda1,\ \cdots,\ \lambda_sλ1, ⋯, λ 
s

 互异,则m ( λ ) = ( λ − λ 1 ) ⋯ ( λ − λ s ) m(\lambda) = (\lambda - \lambda_1) \cdots (\lambda - \lambda_s)m(λ)=(λ−λ 
1

 )⋯(λ−λ 
s

 )

参考《矩阵论》第二版 华科

每个n阶的复数矩阵A都与一个若尔当形矩阵相似,这个若尔当形矩阵除去其中若尔当块的排列次序是被矩阵A唯一确定的,它称为矩阵A的若尔当标准型。首先,Jordan标准型由主对角线为特征值,主对角线上方相邻斜对角线为1的Jordan块按对角排列组成的矩阵称为Jordan形矩阵,而主对角线上的小块方阵Ji称为Jordan块;其次,每个n阶的复数矩阵A都与一个若尔当形矩阵相似,这个若尔当形矩阵除去其中若尔当块的排列次序是被矩阵A唯一确定的,它成为矩阵A的若尔当标准型。

中文名

Jordan标准型

外文名

Jordan standard form

特点1

主对角线上元素为特征值

特点2

主对角线上方相邻斜对角线为1

工    具

初等因子理论

应用学科

高等数学

目录

  1. 1定义
  2. 2实例
  3. Jordan阵
  1. 非Jordan阵
  2. 3相关定理
  3. 定理1
  1. 定理2
  2. 定理3

定义

播报

编辑

对任一

 阶矩阵

 ,必存在

 阶可逆阵

 ,使

 ,其中每一个对角块都是Jordan块:

 ,即对角线上同为

 ,

 的上面都有一个1,其余元素都是0,

 是

 阶方阵。因此

 中所有

 都是矩阵

 的特征值

 。进一步,若不计各个Jordan块

 的排序,

 是由

 唯一确定的,也就是说,

 的Jordan块标准型,在不计Jordan块次序的前提下,是唯一确定的。我们称

 称为Jordan块。 [1]

每个n阶的复数矩阵A都与一个若尔当形矩阵相似,这个若尔当形矩阵除去其中若尔当块的排列次序是被矩阵A唯一确定的,它成为矩阵A的若尔当标准型。 [2]

实例

播报

编辑

Jordan阵

例如:

 ,

 ,

 ,

 ,

 。 [1]

非Jordan阵

 ,

 ,

 。 [1]

相关定理

播报

编辑

定理1

 是复数域上的n维线性空间

线性变换.,在

中必定存在一组基,使

在这组基下的矩阵是若尔当形,并且这个若尔当形矩阵除去其中若尔当块的排列次序是被

唯一决定的。 [2]

定理2

复数矩阵

对角矩阵相似的充分必要条件是,

的初等因子全为一次的。 [2]

定理3

复数矩阵

与对角矩阵相似的充分必要条件是,

不变因子都没有重根。 [2]

词条图册更多图册

概述图册(1张)

参考资料

  • 1

    徐诚浩编著.高等数学(二):线性代数与概率统计.上海.复旦大学出版社.2000.108-109
  • 2

    北京大学数学系几何与代数教研室前代数小组编.高等代数(第三版).北京.高等教育出版社.2003.346-352

学术论文

内容来自

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值