矩阵论(二)——Jordan标准形
1. 线性变换的对角矩阵表示
1.1 特征值与特征向量
1.2 特征子空间
概念
性质
例题
1.3 线性变换矩阵的对角化
概念
例题
2 Jordan矩阵介绍
2.1 Jordan矩阵
2.2 Jordan标准形
计算步骤
推导过程
例题
3. 最小多项式
3.1 矩阵多项式
3.2 方阵的化零多项式
例题
3.3 最小多项式
概念
性质
1. 线性变换的对角矩阵表示
1.1 特征值与特征向量
1. ∃ ϵ ∈ V n ( F ) 且 λ ∈ F , ϵ ≠ 0 , 使 T ( ϵ ) = λ ϵ \exist \epsilon \in V_n(F)且\lambda \in F,\epsilon \neq 0,使T(\epsilon) = \lambda \epsilon∃ϵ∈V
n
(F)且λ∈F,ϵ
=0,使T(ϵ)=λϵ,则λ \lambdaλ是T的特征值,向量ϵ \epsilonϵ是线性变换T对应于λ \lambdaλ的特征向量
证明:
ϵ = ( α 1 α 2 ⋯ α n ) X \epsilon = (\alpha_1 \quad \alpha_2 \quad \cdots \alpha_n) X
ϵ=(α
1
α
2
⋯α
n
)X
T ( ϵ ) = ( α 1 α 2 ⋯ α n ) A X T(\epsilon) = (\alpha_1 \quad \alpha_2 \quad \cdots \alpha_n) AX
T(ϵ)=(α
1
α
2
⋯α
n
)AX
因此 T ( ϵ ) = λ ϵ ⟺ A X = λ X T(\epsilon) = \lambda \epsilon \iff AX = \lambda XT(ϵ)=λϵ⟺AX=λX
2. 线性变换T在基{ α 1 α 2 ⋯ α n } \{\alpha_1 \quad \alpha_2 \quad \cdots \alpha_n\}{α
1
α
2
⋯α
n
}下矩阵为A,则A的特征值是T的特征值;若X是A的特征向量,则ϵ = ( α 1 α 2 ⋯ α n ) X \epsilon = (\alpha_1 \quad \alpha_2 \quad \cdots \alpha_n) Xϵ=(α
1
α
2
⋯α
n
)X是T的特征向量
T的特征值由T决定,和基与变换矩阵的选择无关
不同特征值对应的特征向量必线性无关
1.2 特征子空间
概念
λ \lambdaλ是线性变换T的特征值,ϵ 1 , ϵ 2 , ⋯ , ϵ t \epsilon_1,\ \epsilon_2,\ \cdots,\ \epsilon_tϵ
1
, ϵ
2
, ⋯, ϵ
t
是T对应于λ \lambdaλ的特征向量的极大线性无关组,则称子空间V λ = L { ϵ 1 , ϵ 2 , ⋯ , ϵ t } V_\lambda = L\{\epsilon_1,\ \epsilon_2,\ \cdots,\ \epsilon_t\}V
λ
=L{ϵ
1
, ϵ
2
, ⋯, ϵ
t
}为T关于λ \lambdaλ的特征子空间
∀ α ∈ V λ , α ≠ 0 , α \forall \alpha \in V_\lambda,\ \alpha \neq 0,\ \alpha∀α∈V
λ
, α
=0, α就是T关于λ \lambdaλ的特征向量,V λ = N ( T − λ I ) V_\lambda=N(T - \lambda I)V
λ
=N(T−λI)
若T有s个互异的特征值,则它们就对应s个特征子空间
奇异矩阵: 该矩阵的秩不是满秩
性质
λ 1 , λ 2 , ⋯ , λ s 是 V n ( F ) \lambda_1,\ \lambda_2,\ \cdots,\ \lambda_s是V_n(F)λ
1
, λ
2
, ⋯, λ
s
是V
n
(F)上线性变换T的s个互异的特征值,V λ i V_{\lambda_i}V
λ
i
是λ i \lambda_iλ
i
的特征子空间,则
V λ i \quad V_{\lambda_i}V
λ
i
是T的不变子空间
λ i ≠ λ j 时 , V λ i ∩ V λ j = { 0 } \quad \lambda_i \neq \lambda_j时,V_{\lambda_i} \cap V_{\lambda_j} = \{0\}λ
i
=λ
j
时,V
λ
i
∩V
λ
j
={0}
若 λ i \quad 若\lambda_i若λ
i
是T的k重特征值,则d i m V λ i ≤ k dimV_{\lambda_i} \leq kdimV
λ
i
≤k
V λ 1 + V λ 2 + ⋯ + V λ s = V λ 1 ⨁ V λ 2 ⨁ ⋯ ⨁ V λ s ⊂ V n ( F ) V_{\lambda_1} + V_{\lambda_2} + \cdots + V_{\lambda_s} = V_{\lambda_1} \bigoplus V_{\lambda_2} \bigoplus \cdots \bigoplus V_{\lambda_s} \subset V_n(F)V
λ
1
+V
λ
2
+⋯+V
λ
s
=V
λ
1
⨁V
λ
2
⨁⋯⨁V
λ
s
⊂V
n
(F)
∑ i = 1 s d i m V λ i ≤ d i m V n ( F ) = n \sum^s_{i = 1} dimV_{\lambda_i} \leq dimV_n(F) = n∑
i=1
s
dimV
λ
i
≤dimV
n
(F)=n
∑ i = 1 s d i m V λ i = n ⇒ V λ 1 ⨁ V λ 2 ⨁ ⋯ ⨁ V λ s = V n ( F ) \sum^s_{i = 1} dimV_{\lambda_i} = n \Rightarrow V_{\lambda_1} \bigoplus V_{\lambda_2} \bigoplus \cdots \bigoplus V_{\lambda_s} = V_n(F)∑
i=1
s
dimV
λ
i
=n⇒V
λ
1
⨁V
λ
2
⨁⋯⨁V
λ
s
=V
n
(F)
例题
例题一
例题二
1.3 线性变换矩阵的对角化
概念
线性变换T有对角矩阵 ⟺ \iff⟺ T有n个线性无关的特征向量 ⟺ \iff⟺ V λ 1 ⨁ V λ 2 ⨁ ⋯ ⨁ V λ s = V n ( F ) V_{\lambda_1} \bigoplus V_{\lambda_2} \bigoplus \cdots \bigoplus V_{\lambda_s} = V_n(F)V
λ
1
⨁V
λ
2
⨁⋯⨁V
λ
s
=V
n
(F) ⟺ \iff⟺ m ( λ ) = ( λ − λ 1 ) ( λ − λ 2 ) ⋯ ( λ − λ s ) m(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_s)m(λ)=(λ−λ
1
)(λ−λ
2
)⋯(λ−λ
s
)
V λ 1 ⨁ V λ 2 ⨁ ⋯ ⨁ V λ s = V n ( F ) V_{\lambda_1} \bigoplus V_{\lambda_2} \bigoplus \cdots \bigoplus V_{\lambda_s} = V_n(F)V
λ
1
⨁V
λ
2
⨁⋯⨁V
λ
s
=V
n
(F) ⟺ \iff⟺ λ i 是 T 的 k i 重 特 征 值 , 必 有 d i m V λ i = k i , i = 1 , 2 , ⋯ , n \lambda_i是T的k_i重特征值,必有dimV_{\lambda_i} = k_i,\ i = 1,\ 2,\ \cdots,\ nλ
i
是T的k
i
重特征值,必有dimV
λ
i
=k
i
, i=1, 2, ⋯, n
若λ i \lambda_iλ
i
为T的单特征值,则必有d i m V λ i = 1 dimV_{\lambda_i} = 1dimV
λ
i
=1
线性变换T有n个互异的特征值λ 1 , λ 2 , ⋯ , λ n \lambda_1,\ \lambda_2,\ \cdots,\ \lambda_nλ
1
, λ
2
, ⋯, λ
n
⇒ \Rightarrow⇒ V λ 1 ⨁ V λ 2 ⨁ ⋯ ⨁ V λ s = V n ( F ) V_{\lambda_1} \bigoplus V_{\lambda_2} \bigoplus \cdots \bigoplus V_{\lambda_s} = V_n(F)V
λ
1
⨁V
λ
2
⨁⋯⨁V
λ
s
=V
n
(F)
V n ( F ) V_n(F)V
n
(F)上线性变换有对角矩阵表示 ⟺ \iff⟺ V n ( F ) V_n(F)V
n
(F)可分解为T的一维不变子空间的直和
例题
例题一
例题二
2 Jordan矩阵介绍
2.1 Jordan矩阵
J ( λ ) = [ λ 1 λ 1 ⋱ 1 λ ] J(\lambda) =
⎡⎣⎢⎢⎢⎢⎢λ1λ1⋱1λ⎤⎦⎥⎥⎥⎥⎥
[
𝜆
1
𝜆
1
⋱
1
𝜆
]
J(λ)=
⎣
⎢
⎢
⎡
λ
1
λ
1
⋱
1
λ
⎦
⎥
⎥
⎤
的r阶方阵称为一个r阶Jordan块。由若干个Jordan块J i ( λ i ) J_i(\lambda_i)J
i
(λ
i
)构成的准对角矩阵
J = [ J 1 ( λ 1 ) J 2 ( λ 2 ) ⋱ J m ( λ m ) ] J =
⎡⎣⎢⎢⎢⎢⎢J1(λ1)J2(λ2)⋱Jm(λm)⎤⎦⎥⎥⎥⎥⎥
[
𝐽
1
(
𝜆
1
)
𝐽
2
(
𝜆
2
)
⋱
𝐽
𝑚
(
𝜆
𝑚
)
]
J=
⎣
⎢
⎢
⎡
J
1
(λ
1
)
J
2
(λ
2
)
⋱
J
m
(λ
m
)
⎦
⎥
⎥
⎤
称为Jordan矩阵
Jordan块都是一阶的Jordan矩阵就是对角矩阵
在复数域C上,每个n阶方阵A都相似于一个Jordan矩阵,即存在可逆矩阵P,使
P − 1 A P = J A = [ J 1 ( λ 1 ) J 2 ( λ 2 ) ⋱ J s ( λ s ) ] P^{-1}AP = J_A =
⎡⎣⎢⎢⎢⎢⎢J1(λ1)J2(λ2)⋱Js(λs)⎤⎦⎥⎥⎥⎥⎥
[
𝐽
1
(
𝜆
1
)
𝐽
2
(
𝜆
2
)
⋱
𝐽
𝑠
(
𝜆
𝑠
)
]
P
−1
AP=J
A
=
⎣
⎢
⎢
⎡
J
1
(λ
1
)
J
2
(λ
2
)
⋱
J
s
(λ
s
)
⎦
⎥
⎥
⎤
其中
J i ( λ i ) = [ J i 1 ( λ i ) J i 2 ( λ i ) ⋱ J i t i ( λ i ) ] ∈ C k i ∗ k i J_i(\lambda_i) =
⎡⎣⎢⎢⎢⎢⎢Ji1(λi)Ji2(λi)⋱Jiti(λi)⎤⎦⎥⎥⎥⎥⎥
[
𝐽
𝑖
1
(
𝜆
𝑖
)
𝐽
𝑖
2
(
𝜆
𝑖
)
⋱
𝐽
𝑖
𝑡
𝑖
(
𝜆
𝑖
)
]
\in C^{k_i * k_i}
J
i
(λ
i
)=
⎣
⎢
⎢
⎡
J
i
1
(λ
i
)
J
i
2
(λ
i
)
⋱
J
i
t
i
(λ
i
)
⎦
⎥
⎥
⎤
∈C
k
i
∗k
i
J i j ( λ i ) 为 n j J_{ij}(\lambda_i)为n_jJ
ij
(λ
i
)为n
j
阶Jordan块,∑ j = 1 t i n j = k i \sum^{t_i}_{j = 1} n_j = k_i∑
j=1
t
i
n
j
=k
i
. J i ( λ i ) 是 k i ∗ k i J_i(\lambda_i)是k_i * k_iJ
i
(λ
i
)是k
i
∗k
i
阶Jordan矩阵,∑ i = 1 s k i = n \sum^s_{i = 1} k_i = n∑
i=1
s
k
i
=n
若不计较Jordan的排列次序,则每个方阵的Jordan标准形J A J_AJ
A
唯一
2.2 Jordan标准形
计算步骤
求A的特征多项式
∣ λ I − A ∣ = ( λ − λ 1 ) k 1 ( λ − λ 2 ) k 2 ⋯ ( λ − λ s ) k s |\lambda I - A| = (\lambda - \lambda_1) ^ {k_1} (\lambda - \lambda_2) ^ {k_2} \cdots (\lambda - \lambda_s) ^ {k_s}
∣λI−A∣=(λ−λ
1
)
k
1
(λ−λ
2
)
k
2
⋯(λ−λ
s
)
k
s
代数重数k i k_ik
i
决定Jordan矩阵J i ( λ i ) J_i(\lambda_i)J
i
(λ
i
)的阶数为k i k_ik
i
对λ i \lambda_iλ
i
,由( A − λ i I ) X = 0 (A - \lambda_i I)X = 0(A−λ
i
I)X=0,求A的线性无关的特征向量α 1 , α 2 , ⋯ , α t i \alpha_1,\ \alpha_2,\ \cdots,\ \alpha_{t_i}α
1
, α
2
, ⋯, α
t
i
。λ i \lambda_iλ
i
的几何重数d i m V λ i = t i dimV_{\lambda_i} = t_idimV
λ
i
=t
i
决定J i ( λ i ) J_i(\lambda_i)J
i
(λ
i
)中有t i t_it
i
个Jordan块
若λ i \lambda_iλ
i
的代数重数(k i k_ik
i
)等于几何重数(d i m V λ i dimV_{\lambda_i}dimV
λ
i
): k i = d i m V λ i k_i = dimV_{\lambda_i}k
i
=dimV
λ
i
,λ i \lambda_iλ
i
对应的Jordan矩阵为k i k_ik
i
阶对角矩阵;若d i m V λ i = t i < k i dim V_{\lambda_i} = t_i < k_idimV
λ
i
=t
i
<k
i
,则在V λ i V_{\lambda_i}V
λ
i
中选择适当的特征向量α i \alpha_iα
i
,求Jordan链α i , β 2 , ⋯ , β n i \alpha_i,\ \beta_2,\ \cdots,\ \beta_{n_i}α
i
, β
2
, ⋯, β
n
i
,确定J i ( λ i ) J_i(\lambda_i)J
i
(λ
i
)中Jordan块J i j ( λ i ) J_{ij}(\lambda_i)J
ij
(λ
i
)的阶数n i n_in
i
,从而得到J A J_AJ
A
的结构
所有Jordan链构成矩阵P,必有P − 1 A P = J A P^{-1}AP = J_AP
−1
AP=J
A
推导过程
设A的特征多项式为
∣ λ I − A ∣ = ( λ − λ 1 ) k 1 ( λ − λ 2 ) k 2 ⋯ ( λ − λ s ) k s |\lambda I - A| = (\lambda - \lambda_1) ^ {k_1} (\lambda - \lambda_2) ^ {k_2} \cdots (\lambda - \lambda_s)^{k_s}
∣λI−A∣=(λ−λ
1
)
k
1
(λ−λ
2
)
k
2
⋯(λ−λ
s
)
k
s
其中λ i 是 A 的 k i 重 特 征 值 , ∑ i = 1 s k i = n , λ 1 , λ 2 , ⋯ , λ s 互 异 \lambda_i是A的k_i重特征值,\sum^s_{i = 1} k_i = n,\ \lambda_1,\ \lambda_2,\ \cdots,\ \lambda_s互异λ
i
是A的k
i
重特征值,∑
i=1
s
k
i
=n, λ
1
, λ
2
, ⋯, λ
s
互异
⇒ \Rightarrow⇒
J A = [ J 1 ( λ 1 ) J 2 ( λ 2 ) ⋱ J s ( λ s ) ] ( 2.5 ) J_A =
⎡⎣⎢⎢⎢⎢⎢J1(λ1)J2(λ2)⋱Js(λs)⎤⎦⎥⎥⎥⎥⎥
[
𝐽
1
(
𝜆
1
)
𝐽
2
(
𝜆
2
)
⋱
𝐽
𝑠
(
𝜆
𝑠
)
]
\qquad \qquad \qquad (2.5)
J
A
=
⎣
⎢
⎢
⎡
J
1
(λ
1
)
J
2
(λ
2
)
⋱
J
s
(λ
s
)
⎦
⎥
⎥
⎤
(2.5)
J i ( λ i ) J_i(\lambda_i)J
i
(λ
i
)是主对角线元素为λ i \lambda_iλ
i
的k i k_ik
i
阶Jordan矩阵
令P = ( p 1 , p 2 , ⋯ , p s ) , p i ∈ C n ∗ k i , i = 1 , 2 , ⋯ , s , A P = P J A P = (p_1,\ p_2,\ \cdots,\ p_s),\ p_i \in C ^ {n * k_i},\ i = 1,\ 2,\ \cdots,\ s,\ AP = PJ_AP=(p
1
, p
2
, ⋯, p
s
), p
i
∈C
n∗k
i
, i=1, 2, ⋯, s, AP=PJ
A
可表示为:
A ( p 1 p 2 ⋯ p s ) = ( p 1 p 2 ⋯ p s ) [ J 1 ( λ 1 ) J 2 ( λ 2 ) ⋱ J s ( λ s ) ] A(p_1 \quad p_2 \quad \cdots \quad p_s) = (p_1 \quad p_2 \quad \cdots \quad p_s)
⎡⎣⎢⎢⎢⎢⎢J1(λ1)J2(λ2)⋱Js(λs)⎤⎦⎥⎥⎥⎥⎥
[
𝐽
1
(
𝜆
1
)
𝐽
2
(
𝜆
2
)
⋱
𝐽
𝑠
(
𝜆
𝑠
)
]
A(p
1
p
2
⋯p
s
)=(p
1
p
2
⋯p
s
)
⎣
⎢
⎢
⎡
J
1
(λ
1
)
J
2
(λ
2
)
⋱
J
s
(λ
s
)
⎦
⎥
⎥
⎤
⇒ \Rightarrow⇒
( A p 1 A p 2 ⋯ A p s ) = ( p 1 J 1 ( λ 1 ) p 2 J 2 ( λ 2 ) ⋯ p s J s ( λ s ) ) (A p_1 \quad A p_2 \quad \cdots \quad A p_s) = (p_1 J_1(\lambda_1) \quad p_2 J_2(\lambda_2) \quad \cdots \quad p_s J_s(\lambda_s))
(Ap
1
Ap
2
⋯Ap
s
)=(p
1
J
1
(λ
1
)p
2
J
2
(λ
2
)⋯p
s
J
s
(λ
s
))
⇒ \Rightarrow⇒
A p i = p i J i ( λ i ) , i = 1 , 2 , ⋯ , s ( 2.6 ) A p_i = p_i J_i(\lambda_i), \quad i = 1,\ 2,\ \cdots,\ s \qquad \qquad \qquad (2.6)
Ap
i
=p
i
J
i
(λ
i
),i=1, 2, ⋯, s(2.6)
取A p 1 = p 1 J 1 ( λ 1 ) A p_1 = p_1 J_1(\lambda_1)Ap
1
=p
1
J
1
(λ
1
)为代表来分析,设
J 1 ( λ 1 ) = [ J 11 ( λ 1 ) J 12 ( λ 1 ) ⋱ J 1 t ( λ 1 ) ] J_1(\lambda_1) =
⎡⎣⎢⎢⎢⎢⎢J11(λ1)J12(λ1)⋱J1t(λ1)⎤⎦⎥⎥⎥⎥⎥
[
𝐽
11
(
𝜆
1
)
𝐽
12
(
𝜆
1
)
⋱
𝐽
1
𝑡
(
𝜆
1
)
]
J
1
(λ
1
)=
⎣
⎢
⎢
⎡
J
11
(λ
1
)
J
12
(λ
1
)
⋱
J
1t
(λ
1
)
⎦
⎥
⎥
⎤
其中J 1 i 为 n i J_{1i}为n_iJ
1i
为n
i
阶Jordan块,∑ i = 1 t n i = k 1 \sum^t_{i =1} n_i = k_1∑
i=1
t
n
i
=k
1
⇒ \Rightarrow⇒
J 1 i ( λ 1 ) = [ λ 1 1 λ 1 1 ⋱ ⋱ 1 λ 1 ] n i ∗ n i ( 2.7 ) J_{1i}(\lambda_1) =
⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢λ11λ11⋱⋱1λ1⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥
[
𝜆
1
1
𝜆
1
1
⋱
⋱
1
𝜆
1
]
_{n_i * n_i} \qquad \qquad \qquad (2.7)
J
1i
(λ
1
)=
⎣
⎢
⎢
⎢
⎢
⎡
λ
1
1
λ
1
1
⋱
⋱
1
λ
1
⎦
⎥
⎥
⎥
⎥
⎤
n
i
∗n
i
(2.7)
把p 1 p_1p
1
按n 1 列 , n 2 列 , ⋯ , n t 列 分 块 , p 1 = ( p 1 ( 1 ) p 2 ( 1 ) ⋯ p t ( 1 ) ) n_1列,\ n_2列,\ \cdots,\ n_t列分块,\quad p_1 = (p^{(1)}_1 \quad p^{(1)}_2 \quad \cdots p^{(1)}_t)n
1
列, n
2
列, ⋯, n
t
列分块,p
1
=(p
1
(1)
p
2
(1)
⋯p
t
(1)
)
由等式2.6有
A p j ( 1 ) = p 1 ( 1 ) J 1 j ( λ 1 ) , j = 1 , 2 , ⋯ , t ( 2.8 ) A p^{(1)}_j = p^{(1)}_1 J_{1j}(\lambda_1), \quad j = 1,\ 2,\ \cdots,\ t \qquad \qquad \qquad (2.8)
Ap
j
(1)
=p
1
(1)
J
1j
(λ
1
),j=1, 2, ⋯, t(2.8)
设p j ( 1 ) = ( α 1 β 2 ⋯ β n j ) p^{(1)}_j = (\alpha_1 \quad \beta_2 \quad \cdots \quad \beta_{n_j})p
j
(1)
=(α
1
β
2
⋯β
n
j
),结合等式2.7,等式2.8可化为
A ( α 1 β 2 ⋯ β n j ) = ( α 1 β 2 ⋯ β n j ) [ λ 1 1 λ 1 1 ⋱ ⋱ 1 λ 1 ] A(\alpha_1 \quad \beta_2 \quad \cdots \beta_{n_j}) = (\alpha_1 \quad \beta_2 \cdots \beta_{n_j})
⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢λ11λ11⋱⋱1λ1⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥
[
𝜆
1
1
𝜆
1
1
⋱
⋱
1
𝜆
1
]
A(α
1
β
2
⋯β
n
j
)=(α
1
β
2
⋯β
n
j
)
⎣
⎢
⎢
⎢
⎢
⎡
λ
1
1
λ
1
1
⋱
⋱
1
λ
1
⎦
⎥
⎥
⎥
⎥
⎤
该矩阵等式等价于
{ ( A − λ 1 I ) α 1 = 0 ( A − λ 1 I ) β 2 = α 1 ( A − λ 1 I ) β 3 = β 2 ⋮ ( A − λ 1 I ) β n j = β n j − 1 ( 2.9 )
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪(A−λ1I)α1=0(A−λ1I)β2=α1(A−λ1I)β3=β2⋮(A−λ1I)βnj=βnj−1
{
(
𝐴
−
𝜆
1
𝐼
)
𝛼
1
=
0
(
𝐴
−
𝜆
1
𝐼
)
𝛽
2
=
𝛼
1
(
𝐴
−
𝜆
1
𝐼
)
𝛽
3
=
𝛽
2
⋮
(
𝐴
−
𝜆
1
𝐼
)
𝛽
𝑛
𝑗
=
𝛽
𝑛
𝑗
−
1
\qquad \qquad \qquad (2.9)
⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎧
(A−λ
1
I)α
1
=0
(A−λ
1
I)β
2
=α
1
(A−λ
1
I)β
3
=β
2
⋮
(A−λ
1
I)β
n
j
=β
n
j−1
(2.9)
从等式2.9中求得一组向量{ α 1 , β 2 , ⋯ , β n j } \{\alpha_1,\ \beta_2,\ \cdots,\ \beta_{n_j}\}{α
1
, β
2
, ⋯, β
n
j
},称为Jordan链。链中第一个向量α 1 \alpha_1α
1
是A关于λ 1 \lambda_1λ
1
的特征向量,β 2 , ⋯ , β n j \beta_2,\ \cdots,\ \beta_{n_j}β
2
, ⋯, β
n
j
称为广义特征向量。它的长度n j n_jn
j
就是J 1 j ( λ 1 ) J_{1j}(\lambda_1)J
1j
(λ
1
)的阶数
等式2.8 ⇒ n u m ( J 1 j ( λ 1 ) ) = n u m ( J o r d a n 链 ) = n u m ( α ) \Rightarrow num(J_{1j}(\lambda_1)) = num(Jordan链) = num(\alpha)⇒num(J
1j
(λ
1
))=num(Jordan链)=num(α),num表示总数量。用文字可以表述为:
由等式2.8可知,J 1 ( λ 1 ) J_1(\lambda_1)J
1
(λ
1
)有多少个Jordan块J 1 j ( λ 1 ) J_{1j}(\lambda_1)J
1j
(λ
1
),就有多少条Jordan链,也就会有多少个线性无关的特征向量
例题
例题一
例题二
例题三
3. 最小多项式
3.1 矩阵多项式
A ∈ F n × n , a i ∈ F , g ( λ ) = a m λ m + a m − 1 λ m − 1 + ⋯ + a 1 λ + a 0 A \in F^{n \times n},\ a_i \in F,\ g(\lambda) = a_m \lambda^m + a_{m - 1} \lambda^{m -1} + \cdots +a_1 \lambda + a_0A∈F
n×n
, a
i
∈F, g(λ)=a
m
λ
m
+a
m−1
λ
m−1
+⋯+a
1
λ+a
0
是一个多项式,则称矩阵g ( A ) = a m A m + a m − 1 A m − 1 + ⋯ + a 1 A + a 0 I g(A) = a_m A^m + a_{m - 1} A^{m - 1} + \cdots + a_1 A + a_0 Ig(A)=a
m
A
m
+a
m−1
A
m−1
+⋯+a
1
A+a
0
I为A的矩阵多项式。
A ∈ F n × n A \in F ^ {n \times n}A∈F
n×n
,g(A)是A的矩阵多项式,则:
λ 0 \lambda_0λ
0
是A的特征值 ⇒ \Rightarrow⇒ g ( λ 0 ) g(\lambda_0)g(λ
0
)是g(A)的特征值
P − 1 A P = B ⇒ P − 1 g ( A ) P = g ( B ) P^{-1}AP = B \Rightarrow P^{-1} g(A) P = g(B)P
−1
AP=B⇒P
−1
g(A)P=g(B)
A为准对角矩阵 ⇒ \Rightarrow⇒ g(A)也是准对角矩阵且
A = [ A 1 A 2 ⋯ A k ] , A i 为 方 子 块 ⇒ g ( A ) = [ g ( A 1 ) g ( A 2 ) ⋯ g ( A k ) ] A =
⎡⎣⎢⎢⎢A1A2⋯Ak⎤⎦⎥⎥⎥
[
𝐴
1
𝐴
2
⋯
𝐴
𝑘
]
,A_i为方子块 \Rightarrow g(A) =
⎡⎣⎢⎢⎢⎢g(A1)g(A2)⋯g(Ak)⎤⎦⎥⎥⎥⎥
[
𝑔
(
𝐴
1
)
𝑔
(
𝐴
2
)
⋯
𝑔
(
𝐴
𝑘
)
]
A=
⎣
⎢
⎢
⎡
A
1
A
2
⋯
A
k
⎦
⎥
⎥
⎤
,A
i
为方子块⇒g(A)=
⎣
⎢
⎢
⎡
g(A
1
)
g(A
2
)
⋯
g(A
k
)
⎦
⎥
⎥
⎤
方阵g(A)计算
已知方阵A和多项式g ( λ ) = a m λ m + a m − 1 λ m − 1 + ⋯ + a 1 λ + a 0 g(\lambda) = a_m \lambda^m + a_{m - 1} \lambda ^ {m - 1} + \cdots + a_1 \lambda + a_0g(λ)=a
m
λ
m
+a
m−1
λ
m−1
+⋯+a
1
λ+a
0
当m ≥ r m \geq rm≥r时,
g ( J ( λ ) ) = ∑ i = 0 r − 1 g ( i ) ( λ ) i ! U i = [ g ( λ ) g ′ ( λ ) ⋯ g ( r − 1 ) ( λ ) ( r − 1 ) ! g ( λ ) ⋱ ⋮ ⋱ g ′ ( λ ) g ( λ ) ] g(J(\lambda)) = \sum^{r - 1}_{i=0}\frac{g^{(i)}(\lambda)}{i!}U^i =
⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢g(λ)g′(λ)g(λ)⋯⋱⋱g(r−1)(λ)(r−1)!⋮g′(λ)g(λ)⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥
[
𝑔
(
𝜆
)
𝑔
′
(
𝜆
)
⋯
𝑔
(
𝑟
−
1
)
(
𝜆
)
(
𝑟
−
1
)
!
𝑔
(
𝜆
)
⋱
⋮
⋱
𝑔
′
(
𝜆
)
𝑔
(
𝜆
)
]
g(J(λ))=
i=0
∑
r−1
i!
g
(i)
(λ)
U
i
=
⎣
⎢
⎢
⎢
⎢
⎡
g(λ)
g
′
(λ)
g(λ)
⋯
⋱
⋱
(r−1)!
g
(r−1)(λ)
⋮
g
′
(λ)
g(λ)
⎦
⎥
⎥
⎥
⎥
⎤
当m < r m < rm<r时,
g ( J ( λ ) ) = [ g ( λ ) g ′ ( λ ) ⋯ g m ( λ ) m ! 0 ⋯ 0 g ( λ ) ⋱ 0 ⋱ g ( m ) ( λ ) m ! ⋱ ⋮ g ′ ( λ ) g ( λ ) ] g(J(\lambda)) =
⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢g(λ)g′(λ)g(λ)⋯gm(λ)m!⋱⋱0⋱⋯00g(m)(λ)m!⋮g′(λ)g(λ)⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
[
𝑔
(
𝜆
)
𝑔
′
(
𝜆
)
⋯
𝑔
𝑚
(
𝜆
)
𝑚
!
0
⋯
0
𝑔
(
𝜆
)
⋱
0
⋱
𝑔
(
𝑚
)
(
𝜆
)
𝑚
!
⋱
⋮
𝑔
′
(
𝜆
)
𝑔
(
𝜆
)
]
g(J(λ))=
⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
g(λ)
g
′
(λ)
g(λ)
⋯
m!
g
m
(λ)
⋱
⋱
0
⋱
⋯
0
0
m!
g
(m)
(λ)
⋮
g
′
(λ)
g(λ)
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
其中r表示J ( λ ) J(\lambda)J(λ)的阶数
3.2 方阵的化零多项式
化零多项式: n阶方阵A,∃ 多 项 式 g ( λ ) , 使 g ( A ) = 0 \exists 多项式g(\lambda),使g(A) = 0∃多项式g(λ),使g(A)=0
Cayley-Hamilton: f ( λ ) = ∣ λ I − A ∣ = λ n + a n − 1 λ n − 1 + ⋯ + a 1 λ + a 0 ⇒ f ( A ) = 0 f(\lambda) = |\lambda I - A| = \lambda^n + a_{n - 1} \lambda^{n - 1} + \cdots + a_1 \lambda + a_0 \Rightarrow f(A) = 0f(λ)=∣λI−A∣=λ
n
+a
n−1
λ
n−1
+⋯+a
1
λ+a
0
⇒f(A)=0,即方阵A的特征多项式就是A的化零多项式
f ( λ ) f(\lambda)f(λ)为n次多项式,f ( A ) = 0 f(A) = 0f(A)=0使得A n A^nA
n
可以表示为A k ( k < n ) A^k(k < n)A
k
(k<n)的幂次项的组合:
A n = − ( a n − 1 A n − 1 + a n − 2 A n − 2 + ⋯ + a 1 A + a 0 I ) A^n = -(a_{n - 1}A^{n - 1} + a_{n - 2}A^{n - 2} + \cdots + a_1A + a_0I)
A
n
=−(a
n−1
A
n−1
+a
n−2
A
n−2
+⋯+a
1
A+a
0
I)
例题
例题一
例题二
A = [ 1 0 1 − 1 ] , f ( λ ) = ∣ λ I − A ∣ = λ 2 − 1 , g ( λ ) = λ 6 + 2 λ 5 − 4 λ 3 + λ 2 − 5 A =
[110−1]
[
1
0
1
−
1
]
,f(\lambda) = |\lambda I - A| = \lambda^2 - 1,g(\lambda) = \lambda^6 + 2 \lambda^5 -4 \lambda^3 + \lambda^2 - 5A=[
1
1
0
−1
],f(λ)=∣λI−A∣=λ
2
−1,g(λ)=λ
6
+2λ
5
−4λ
3
+λ
2
−5,求g(A)
解: g ( λ ) = ( λ 2 − 1 ) ( λ 4 + 2 λ 3 + λ 2 − 2 λ + 2 ) + ( − 2 λ − 3 ) ⇒ g ( A ) = − 2 A − 3 g(\lambda) = (\lambda^2 - 1)(\lambda^4 + 2 \lambda^3 + \lambda^2 - 2 \lambda + 2) + (-2 \lambda - 3) \Rightarrow g(A) = -2 A - 3g(λ)=(λ
2
−1)(λ
4
+2λ
3
+λ
2
−2λ+2)+(−2λ−3)⇒g(A)=−2A−3
3.3 最小多项式
概念
若A ∈ C n × n A \in C^{n \times n}A∈C
n×n
,则A有无数个化零多项式。事实上,f ( λ ) = ∣ λ I − A ∣ , 有 f ( A ) = 0 f(\lambda) = |\lambda I - A|,有f(A) = 0f(λ)=∣λI−A∣,有f(A)=0
且∀ g ( λ ) = h ( λ ) f ( λ ) \forall g(\lambda) = h(\lambda) \ f(\lambda)∀g(λ)=h(λ) f(λ),均有g ( A ) = h ( A ) ⋅ f ( A ) g(A) = h(A) \cdot f(A)g(A)=h(A)⋅f(A)
最小多项式: n阶方阵A的所有化零多项式中,次数最低且首系数为1的多项式称为A的最小多项式,记为m ( λ ) m(\lambda)m(λ)
性质
T的特征多项式f ( λ ) f(\lambda)f(λ)与最小多项式m ( λ ) m(\lambda)m(λ)有相同的根(重数不计),即
f ( λ ) = ∣ λ I − A ∣ = ( λ − λ 1 ) r 1 ( λ − λ 2 ) r 2 ⋯ ( λ − λ s ) r s f(\lambda) = |\lambda I - A| = (\lambda - \lambda_1)^{r_1}(\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_s)^{r_s}
f(λ)=∣λI−A∣=(λ−λ
1
)
r
1
(λ−λ
2
)
r
2
⋯(λ−λ
s
)
r
s
⇒ \Rightarrow⇒ m ( λ ) = ( λ − λ 1 ) t 1 ( λ − λ 2 ) t 2 ⋯ ( λ − λ s ) t s , 1 ≤ t i ≤ r i , i = 1 , 2 , ⋯ , s m(\lambda) = (\lambda - \lambda_1)^{t_1}(\lambda - \lambda_2)^{t_2} \cdots (\lambda - \lambda_s)^{t_s},1 \leq t_i \leq r_i,i = 1,\ 2,\ \cdots,\ sm(λ)=(λ−λ
1
)
t
1
(λ−λ
2
)
t
2
⋯(λ−λ
s
)
t
s
,1≤t
i
≤r
i
,i=1, 2, ⋯, s
设T的特征多项式为
f ( λ ) = ( λ − λ 1 ) r 1 ( λ − λ 2 ) r 2 ⋯ ( λ − λ s ) r s , f(\lambda) = (\lambda - \lambda_1)^{r_1}(\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_s)^{r_s},
f(λ)=(λ−λ
1
)
r
1
(λ−λ
2
)
r
2
⋯(λ−λ
s
)
r
s
,
T的Jordan标准形中关于特征值λ i \lambda_iλ
i
的Jordan块的最高阶数为n i ‾ \overline{n_i}
n
i
,则T的最小多项式
m ( λ ) = ( λ − λ 1 ) n 1 ‾ ( λ − λ 2 ) n 2 ‾ ⋯ ( λ − λ s ) n s ‾ m(\lambda) = (\lambda - \lambda_1)^{\overline{n_1}}(\lambda - \lambda_2)^{\overline{n_2}} \cdots (\lambda - \lambda_s)^{\overline{n_s}}
m(λ)=(λ−λ
1
)
n
1
(λ−λ
2
)
n
2
⋯(λ−λ
s
)
n
s
线性变换T可对角化 ⟺ \iff⟺ T有n个线性无关的特征向量 ⟺ \iff⟺ m ( λ ) = ( λ − λ 1 ) ( λ − λ 2 ) ⋯ ( λ − λ s ) m(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_s)m(λ)=(λ−λ
1
)(λ−λ
2
)⋯(λ−λ
s
)
设A ∈ C n × n A \in C ^ {n \times n}A∈C
n×n
,A的最小多项式m ( λ ) m(\lambda)m(λ),特征多项式f ( λ ) f(\lambda)f(λ),任一化零多项式ψ ( λ ) \psi (\lambda)ψ(λ),则
m ( λ ) ∣ ψ ( λ ) , 即 ψ ( λ ) = h ( λ ) ⋅ m ( λ ) m(\lambda) | \psi (\lambda),即\psi (\lambda) = h(\lambda) \cdot m(\lambda)m(λ)∣ψ(λ),即ψ(λ)=h(λ)⋅m(λ),m ( λ ) m(\lambda)m(λ)整除T的一切化零多项式
m ( λ ) m(\lambda)m(λ)的零点是A的特征值,反之,A的特征值是m ( λ ) m(\lambda)m(λ)的零点
m ( λ ) m(\lambda)m(λ)是唯一的
相似矩阵具有相同的最小多项式
∧ = [ λ 1 λ 2 ⋱ λ s ] \wedge =
⎡⎣⎢⎢⎢⎢⎢λ1λ2⋱λs⎤⎦⎥⎥⎥⎥⎥
[
𝜆
1
𝜆
2
⋱
𝜆
𝑠
]
∧=
⎣
⎢
⎢
⎡
λ
1
λ
2
⋱
λ
s
⎦
⎥
⎥
⎤
,若λ 1 , ⋯ , λ s \lambda1,\ \cdots,\ \lambda_sλ1, ⋯, λ
s
互异,则m ( λ ) = ( λ − λ 1 ) ⋯ ( λ − λ s ) m(\lambda) = (\lambda - \lambda_1) \cdots (\lambda - \lambda_s)m(λ)=(λ−λ
1
)⋯(λ−λ
s
)
参考《矩阵论》第二版 华科
每个n阶的复数矩阵A都与一个若尔当形矩阵相似,这个若尔当形矩阵除去其中若尔当块的排列次序是被矩阵A唯一确定的,它称为矩阵A的若尔当标准型。首先,Jordan标准型由主对角线为特征值,主对角线上方相邻斜对角线为1的Jordan块按对角排列组成的矩阵称为Jordan形矩阵,而主对角线上的小块方阵Ji称为Jordan块;其次,每个n阶的复数矩阵A都与一个若尔当形矩阵相似,这个若尔当形矩阵除去其中若尔当块的排列次序是被矩阵A唯一确定的,它成为矩阵A的若尔当标准型。
中文名
Jordan标准型
外文名
Jordan standard form
特点1
主对角线上元素为特征值
特点2
主对角线上方相邻斜对角线为1
工 具
初等因子理论
应用学科
高等数学
目录
定义
播报
编辑
对任一
阶矩阵
,必存在
阶可逆阵
,使
,其中每一个对角块都是Jordan块:
,即对角线上同为
,
的上面都有一个1,其余元素都是0,
是
阶方阵。因此
中所有
都是矩阵
的特征值,
。进一步,若不计各个Jordan块
的排序,
是由
唯一确定的,也就是说,
的Jordan块标准型,在不计Jordan块次序的前提下,是唯一确定的。我们称
称为Jordan块。 [1]
每个n阶的复数矩阵A都与一个若尔当形矩阵相似,这个若尔当形矩阵除去其中若尔当块的排列次序是被矩阵A唯一确定的,它成为矩阵A的若尔当标准型。 [2]
实例
播报
编辑
Jordan阵
例如:
,
,
,
,
。 [1]
非Jordan阵
,
,
。 [1]
相关定理
播报
编辑
定理1
设
的线性变换.,在
中必定存在一组基,使
在这组基下的矩阵是若尔当形,并且这个若尔当形矩阵除去其中若尔当块的排列次序是被
唯一决定的。 [2]
定理2
复数矩阵
的初等因子全为一次的。 [2]
定理3
复数矩阵
与对角矩阵相似的充分必要条件是,
的不变因子都没有重根。 [2]
参考资料
- 1 徐诚浩编著.高等数学(二):线性代数与概率统计.上海.复旦大学出版社.2000.108-109
- 2 北京大学数学系几何与代数教研室前代数小组编.高等代数(第三版).北京.高等教育出版社.2003.346-352
学术论文
内容来自
- 许成亮,吴化璋. 任意域上矩阵的Jordan标准型.《CNKI;WanFang》,2012
- 袁俊伟. 关于用几何方法求Jordan标准型的一点注记.《CNKI》,1996
- 沈启钧,杜藏. 确定实非对称矩阵Jordan标准型的一种算法.《CNKI》,1983
- 李殿龙,隋思涟. 2-幂零矩阵的Jordan标准型.《CNKI》,2001
- 张知难. 实随机矩阵的Jordan标准型.《CNKI》,2001