要构建给定整数集合 {3, 5, 6, 9, 12}
的哈夫曼树,我们需要按照哈夫曼算法的步骤进行操作。以下是详细步骤:
1. 哈夫曼树的基本原理
- 哈夫曼树是一种带权路径长度最短的二叉树。
- 构建哈夫曼树的步骤:
- 将每个整数作为一个单独的树,权重为整数的值。
- 每次选择权重最小的两棵树合并,生成一棵新树,新树的权重为两棵子树的权重之和。
- 重复上述步骤,直到只剩下一棵树。
2. 构建过程
给定整数集合 {3, 5, 6, 9, 12}
。
-
步骤1:初始森林:
3, 5, 6, 9, 12
-
步骤2:选择权重最小的两棵树
3
和5
,合并生成新树,权重为3 + 5 = 8
。6, 8, 9, 12
-
步骤3:选择权重最小的两棵树
6
和8
,合并生成新树,权重为6 + 8 = 14
。9, 12, 14
-
步骤4:选择权重最小的两棵树
9
和12
,合并生成新树,权重为9 + 12 = 21
。14, 21
-
步骤5:选择权重最小的两棵树
14
和21
,合并生成新树,权重为14 + 21 = 35
。35
3. 哈夫曼树的结构
最终的哈夫曼树结构如下:
35
/ \
14 21
/ \ / \
6 8 9 12
/ \
3 5
4. 哈夫曼树的表示
用括号表示法表示哈夫曼树:
(35, (14, (6), (8, (3), (5))), (21, (9), (12)))
5. 总结
给定整数集合 {3, 5, 6, 9, 12}
的哈夫曼树结构如上所示。
答案
哈夫曼树为:
35
/ \
14 21
/ \ / \
6 8 9 12
/ \
3 5