Problem Description
大家一定觉的运动以后喝可乐是一件很惬意的事情,但是seeyou却不这么认为。因为每次当seeyou买了可乐以后,阿牛就要求和seeyou一起分享这一瓶可乐,而且一定要喝的和seeyou一样多。但seeyou的手中只有两个杯子,它们的容量分别是N 毫升和M 毫升 可乐的体积为S (S<101)毫升 (正好装满一瓶) ,它们三个之间可以相互倒可乐 (都是没有刻度的,且 S==N+M,101>S>0,N>0,M>0) 。聪明的ACMER你们说他们能平分吗?如果能请输出倒可乐的最少的次数,如果不能输出”NO”。
Input
三个整数 : S 可乐的体积 , N 和 M是两个杯子的容量,以”0 0 0”结束。
Output
如果能平分的话请输出最少要倒的次数,否则输出”NO”。
Sample Input
7 4 3
4 1 3
0 0 0
Sample Output
NO
3
以前也做过类似的问题。这题的题意有点不清楚,这题平分可乐成功的前提是可乐里的水必须平分完,也就是说如果初始的水量是奇数那就肯定不可能成功。
还有就是不一定必须得把可乐平分到m,n两个杯子里,不然第二个样例就不通过,事实上第二个样例的最终结果是2,0,2。只要可乐平分了就行,当时在这里纠结了很久。。。
#include <iostream>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
#include <cstdio>
#include <algorithm>
#define INF 0x3f3f3f3f
#define MAXN 100010
using namespace std;
struct Node
{
int s,n,m,step;
};
int vis[105][105][105];
bool bfs(int s,int n,int m)
{
memset(vis,0,sizeof(vis));
Node start;
start.s=s,start.n=0,start.m=0,start.step=0;
vis[s][0][0]=1;
queue<Node> q;
q.push(start);
while(!q.empty())
{
Node tmp=q.front();
q.pop();
//cout<<tmp.s<<" "<<tmp.n<<" "<<tmp.m<<" "<<tmp.step<<endl;
if((tmp.m==s/2&&tmp.n==s/2)||(tmp.s==s/2&&tmp.n==s/2)||(tmp.s==s/2&&tmp.m==s/2))
{
printf("%d\n",tmp.step);
return true;
}
Node tmp1;
tmp1=tmp;
if(tmp1.s!=s)
{
if(tmp1.m!=0)
{
if(tmp1.m<s-tmp1.s)
{
tmp1.s+=tmp1.m;
tmp1.m=0;
}
else
{
tmp1.m-=(s-tmp1.s);
tmp1.s=s;
}
}
if(!vis[tmp1.s][tmp1.m][tmp1.n])
{
vis[tmp1.s][tmp1.m][tmp1.n]=1;
tmp1.step++;
q.push(tmp1);
}
tmp1=tmp;
if(tmp1.n!=0)
{
if(tmp1.n<s-tmp1.s)
{
tmp1.s+=tmp1.n;
tmp1.n=0;
}
else
{
tmp1.n-=(s-tmp1.s);
tmp1.s=s;
}
}
if(!vis[tmp1.s][tmp1.m][tmp1.n])
{
vis[tmp1.s][tmp1.m][tmp1.n]=1;
tmp1.step++;
q.push(tmp1);
}
}
tmp1=tmp;
if(tmp1.m!=m)
{
if(tmp1.s!=0)
{
if(tmp1.s<m-tmp1.m)
{
tmp1.m+=tmp1.s;
tmp1.s=0;
}
else
{
tmp1.s-=(m-tmp1.m);
tmp1.m=m;
}
}
if(!vis[tmp1.s][tmp1.m][tmp1.n])
{
vis[tmp1.s][tmp1.m][tmp1.n]=1;
tmp1.step++;
q.push(tmp1);
}
tmp1=tmp;
if(tmp1.n!=0)
{
if(tmp1.n<m-tmp1.m)
{
tmp1.m+=tmp1.n;
tmp1.n=0;
}
else
{
tmp1.n-=(m-tmp1.m);
tmp1.m=m;
}
}
if(!vis[tmp1.s][tmp1.m][tmp1.n])
{
vis[tmp1.s][tmp1.m][tmp1.n]=1;
tmp1.step++;
q.push(tmp1);
}
}
tmp1=tmp;
if(tmp1.n!=n)
{
if(tmp1.m!=0)
{
if(tmp1.m<n-tmp1.n)
{
tmp1.n+=tmp1.m;
tmp1.m=0;
}
else
{
tmp1.m-=(n-tmp1.n);
tmp1.n=n;
}
}
if(!vis[tmp1.s][tmp1.m][tmp1.n])
{
vis[tmp1.s][tmp1.m][tmp1.n]=1;
tmp1.step++;
q.push(tmp1);
}
tmp1=tmp;
if(tmp1.s!=0)
{
if(tmp1.s<n-tmp1.n)
{
tmp1.n+=tmp1.s;
tmp1.s=0;
}
else
{
tmp1.s-=(n-tmp1.n);
tmp1.n=n;
}
}
if(!vis[tmp1.s][tmp1.m][tmp1.n])
{
vis[tmp1.s][tmp1.m][tmp1.n]=1;
tmp1.step++;
q.push(tmp1);
}
}
}
return false;
}
int main()
{
int s,n,m;
while(~scanf("%d%d%d",&s,&n,&m))
{
if(s==0&&n==0&&m==0)
break;
if(s%2==1)
{
printf("NO\n");
continue;
}
if(!bfs(s,n,m))
printf("NO\n");
}
return 0;
}