DCNv1 - DCNv2 - RepPoint

从faster-rcnn谈起:

faster-rcnnhttps://zhuanlan.zhihu.com/p/31426458具体ROI-pooling的解读:

ROIpoolinghttps://blog.csdn.net/u011436429/article/details/80279536RFCN到底怎么改进了ROI-pooling

RFCNhttps://www.cnblogs.com/shouhuxianjian/p/7710707.htmlDCN1继续改进了ROI-pooling

https://arxiv.org/abs/1703.06211https://arxiv.org/abs/1703.06211DCNv2改进DCNv1的Deformabel Convolutions为 Modulated Deformabel Convolutions,同时还要加入 RCNN feature mimicking (网络模仿的训练策略)。

这里的主分支和子分支的规则是类似的,子分支的Whole Image Regions对应了主分支的原图,子分支的输入是原图的crop,所以子分支里不需要经过主分支的Region Proposals。

DCNv2icon-default.png?t=LBL2https://blog.csdn.net/u014380165/article/details/88072737Reppoint的代码解读

RepPointicon-default.png?t=LBL2https://zhuanlan.zhihu.com/p/326058238

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值