CVPR2022
主要贡献
- 通过引入虚拟数据集将尺度信息解耦并估计。

方法
- 包含两个训练网络: A MDE network Φ:I→d\Phi: I \rightarrow dΦ:I→d, a Pose Estimation Network Ω:Ia,Ib→T^a→b\Omega: {I_a , I_b} \rightarrow \hat{T}_{a \rightarrow b}Ω:Ia,Ib→T^a→b; A ScaleNet δ:fΦ→s\delta:f_{\Phi} \rightarrow sδ:fΦ→s。s 为场景估计深度的尺度。
- 训练步骤:Stage1: 预训练一个 Φ\PhiΦ. Stage2:联合训练(红和蓝线)使得 Φ\PhiΦ 适应真实以及模拟数据集。Stage3: 用模拟数据集训练 ScaleNet δ\deltaδ, {Φ\PhiΦ,Ω\OmegaΩ}固定下来。
- 损失函数:

- Lss,LsynL_{ss}, L_{syn}Lss,Lsyn分别指代自监督损失以及合成数据集损失。LsynL_{syn}Lsyn是一阶范数。
-论文希望从自监督与训练模型中学习定性的深度,从合成数据集中学习sharp and smooth的深度,所以设置了以下的s domain specific 损失。


2583






