试题 D: 数的分解
把 2019 分解成 3 个各不相同的正整数之和,并且要求每个正整数都不包
含数字 2 和 4,一共有多少种不同的分解方法?
注意交换 3 个整数的顺序被视为同一种方法,例如 1000+1001+18 和
1001+1000+18 被视为同一种。
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一
个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
【分析】
将2019分解为3个各不相同的正整数之和,可不要直接用三重循环。直接
用三重循环太过于浪费计算力。正确的做法是使用二重循环,算出来两个数了,
用2019减去这两个数就得到第三个数。
题目中的条件有两个:
1.每个正整数都不包含数字 2 和 4。
2.交换 3 个整数的顺序被视为同一种方法。
对于条件1,可以自己写一个函数将数字逐位分解,在判断是否是2或4,
也可以将数字转换为字符串,利用String类的contains方法判断字符串中是否
存在子串“2”或“4”。这里使用的是第二种方法。
对于条件2,只要保证三个数是从小到大排列的,那么就不会出现重复问题。
【答案】
40785
【代码】
版本一(使用基本数据类型)
public class Main {
public static void main(String[] args) {
int sum = 0;
String str;
//2019/3=673 只要保证三个数是从小到大排列的,那么就不会出现重复问题
for (int i = 1; i < 673; i++) {
//以便于使用String类中的contains方法
str = String.valueOf(i);
if (str.contains("2") || str.contains("4")) continue;
//(2019-i+1)/2考虑了2019-i是奇偶数两种情况下,都该是
//j < (2019-i+1)/2能取得j的最大值
for (int j = i+1; j < (2019-i+1)/2; j++) {
str = String.valueOf(j);
if (str.contains("2") || str.contains("4")) continue;
str = String.valueOf(2019-i-j);
if (str.contains("2") || str.contains("4")) continue;
sum++;
}
}
System.out.println(sum);
}
}