试题 D: 数的分解【第十届蓝桥杯 省赛 Java B组】

试题 D: 数的分解

  把 2019 分解成 3 个各不相同的正整数之和,并且要求每个正整数都不包
含数字 2 和 4,一共有多少种不同的分解方法?
  注意交换 3 个整数的顺序被视为同一种方法,例如 1000+1001+18 和
1001+1000+18 被视为同一种。

【答案提交】

  这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一
个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

【分析】

  将2019分解为3个各不相同的正整数之和,可不要直接用三重循环。直接
用三重循环太过于浪费计算力。正确的做法是使用二重循环,算出来两个数了,
用2019减去这两个数就得到第三个数。
  题目中的条件有两个:
  1.每个正整数都不包含数字 2 和 4。
  2.交换 3 个整数的顺序被视为同一种方法。
  对于条件1,可以自己写一个函数将数字逐位分解,在判断是否是2或4,
也可以将数字转换为字符串,利用String类的contains方法判断字符串中是否
存在子串“2”或“4”。这里使用的是第二种方法。
  对于条件2,只要保证三个数是从小到大排列的,那么就不会出现重复问题。

【答案】

40785

【代码】

版本一(使用基本数据类型)


public class Main {
	
	public static void main(String[] args) {
		int sum = 0;
		String str;
		//2019/3=673 只要保证三个数是从小到大排列的,那么就不会出现重复问题
		for (int i = 1; i < 673; i++) {
			//以便于使用String类中的contains方法
			str = String.valueOf(i);
			if (str.contains("2") || str.contains("4")) continue;
			//(2019-i+1)/2考虑了2019-i是奇偶数两种情况下,都该是
			//j < (2019-i+1)/2能取得j的最大值
			for (int j = i+1; j < (2019-i+1)/2; j++) {
				str = String.valueOf(j);
				if (str.contains("2") || str.contains("4")) continue;
				str = String.valueOf(2019-i-j);
				if (str.contains("2") || str.contains("4")) continue;
				sum++;
			}
		}
		System.out.println(sum);
	}
}

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值