CDC 数据入湖方案:Flink CDC > Kafka > Hudi

本文介绍了一种使用Flink CDC从MySQL抓取数据,通过Kafka作为中间层,最终将数据写入Hudi湖的实时处理方案。详细步骤包括环境准备、Flink CDC源表创建、Kafka中间表创建、Hudi目标表创建,并提供了相关资源链接以供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本方案的技术链路为:使用 Flink CDC 将 MySQL 的 CDC 数据 (Json 格式)接入到 Kafka ,然后通过 Flink Hudi Connector 将摄取的 CDC 数据写入到 Hudi 表中。文本是本博客 CDC 数据入湖系列方案中最为基础的一套,技术堆栈较为简单,适合作为 POC 方案快速搭建 CDC 实时处理链路。如果寻求更适合生产环境的高阶解决方案,请参考:

Flink CDCFlink的一个功能模块,用于实时捕获和处理数据库变更。它可以将数据库中的变更数据以流的形式输出,并提供了一些API和工具来支持数据的转换和处理。 Hudi(Hadoop Upserts anD Incrementals)是一种用于大规模数据的开源存储和处理框架。它提供了基于日志的增量写和查询功能,支持数据的实时插、更新和查询。通过将Flink CDCHudi结合使用,可以实现将通过Flink CDC捕获到的两张表的数据合并成一张视图,并同时写数据Hudi)和Kafka中。 具体步骤如下: 1. 首先需要配置Flink CDC来捕获两张表的变更数据。根据具体的数据库类型和配置,将Flink CDC连接到数据库,并配置需要捕获的表信息。 2. 使用Flink的DataStream API来处理捕获到的变更数据。你可以使用Flink的转换和操作函数来对数据进行合并、过滤、转换等操作,以满足你的需求。 3. 将处理后的数据同时写数据Hudi)和Kafka中。你可以使用FlinkHudi Sink和Kafka Sink来将数据到相应的目标系统中。配置Hudi Sink时,你需要指定Hudi的表名、数据模式(例如增量写或覆盖写)、存储路径等信息。配置Kafka Sink时,你需要指定Kafka的连接信息、主题等信息。 4. 确保Flink应用程序在运行时具备足够的资源和容错机制。你可以根据数据量和处理需求来调整Flink任务的并行度、内存分配等参数,以保证流处理的性能和可靠性。 总结起来,通过配置Flink CDC来捕获数据库的变更数据,然后使用Flink的DataStream API来处理数据,并将处理后的数据同时写HudiKafka中,就可以实现Flink CDCHudi的结合应用。这样可以将两张表的数据合并成一张视图,并且将数据保存到数据和发送到Kafka中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Laurence 

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值