第二章 浅层神经网络

本文介绍了浅层神经网络的结构和工作原理,详细阐述了正向传播过程,包括单个样本和多个样本的计算,并讨论了激活函数的选择,如sigmoid、tanh、ReLU和Leaky ReLU。此外,还详细解析了神经网络的反向传播,包括梯度下降公式和推导过程,最后提到了随机初始化参数的重要性。
摘要由CSDN通过智能技术生成

目录

1 神经网络概述

2 神经网络的正向传播过程

1 单个样本的正向传播

2 m个样本的正向传播

3 激活函数

4 神经网络的反向传播过程

1 神经网络的梯度下降公式

2 反向传播的推导过程

5 随机初始化


1 神经网络概述

在上一章的学习中我们了解了逻辑回归,实际上逻辑回归就是一个最简单的神经网络模型,这里我们将学习具有隐藏层的神经网络,具体而言就是我们在输入层和输入层中增加了一个隐藏层,从计算的角度而言,就是在逻辑回归的正向和反向传播过程中增加了一次重复的运算。

上图的正向传播过程分为两层,第一层是输入层到隐藏层,用右上角的[1]表示层数:

z^{[1]}=W^{[1]}x+b^{[1]}   a^{[1]}=\sigma (z^{[1]})

第二层是隐藏层到输出层:

z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}   a^{[2]}=\sigma (z^{[2]})

类似于逻辑回归,我们需要通过反向传播计算参数,其流程如下所示

2 神经网络的正向传播过程

1 单个样本的正向传播

两层神经网络可以看作两次逻辑回归过程,为了简化运算,我们可以采用向量化的矩阵运算方法,将整个正向传播过程用矩阵运算的形式表达

在使用矩阵运算时,要特别注意的是维度的问题,W^{[1]}的维度(4,3), b^{[1]}的维度是(4,1) W^{[2]}的维度是(1,4) 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值