欧几里得算法

本文介绍了一种用于解决同余方程 x*a=1(mod n) 的扩展欧几里得算法,并通过将该方程转化为 x*a+n*y=1 的形式来求解未知数 x 和 y。通过具体的 C++ 实现代码展示了算法的工作原理。
摘要由CSDN通过智能技术生成

x*a=1(mod n) , 转换成x*a + n * y  = 1的形式,进行求解即可

// File Name: 1092.cpp
// Author: bo_jwolf
// Created Time: 2014年02月04日 星期二 15时30分26秒

#include<vector>
#include<list>
#include<map>
#include<set>
#include<deque>
#include<stack>
#include<bitset>
#include<algorithm>
#include<functional>
#include<numeric>
#include<utility>
#include<sstream>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<ctime>

using namespace std;
typedef long long LL;

LL ex_gcd( LL a, LL b, LL &x, LL &y ){
	if( b == 0 ){
		x = 1;
		y = 0;
		return a;
	}
	else{
		 LL temp = ex_gcd( b, a % b, x, y );
		 LL t = x;
		 x = y;
		 y = t - ( a / b ) * y;
		 return temp;
	}
}

int main(){
	LL n, m, a, b, r, s, t, x, y;
	while( cin >> a >> n ){
		if( !a && !n )
			break;
		a = a, b = n;
		r = ex_gcd( a, b, x, y );
		if( x < 0 ){
			x += b;
		}
		//LL res = ( x * a ) % y;
		cout << x << endl;
	}
return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值