PTA 估值一亿的AI核心代码 (20 分)

该博客介绍了一个AI英文问答程序的实现,程序会根据用户输入进行特定的文本处理,如删除多余空格、大小写转换、特定短语替换等,并在回答前添加'AI:'标识。博主分享了代码实现并提及曾因电脑问题影响了编程时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

估值一亿的AI核心代码 (20 分)
AI.jpg

以上图片来自新浪微博。

本题要求你实现一个稍微更值钱一点的 AI 英文问答程序,规则是:

无论用户说什么,首先把对方说的话在一行中原样打印出来;
消除原文中多余空格:把相邻单词间的多个空格换成 1 个空格,把行首尾的空格全部删掉,把标点符号前面的空格删掉;
把原文中所有大写英文字母变成小写,除了 I;
把原文中所有独立的 can you、could you 对应地换成 I can、I could—— 这里“独立”是指被空格或标点符号分隔开的单词;
把原文中所有独立的 I 和 me 换成 you;
把原文中所有的问号 ? 换成惊叹号 !;
在一行中输出替换后的句子作为 AI 的回答。
输入格式:
输入首先在第一行给出不超过 10 的正整数 N,随后 N 行,每行给出一句不超过 1000 个字符的、以回车结尾的用户的对话,对话为非空字符串,仅包括字母、数字、空格、可见的半角标点符号。

输出格式:
按题面要求输出,每个 AI 的回答前要加上 AI: 和一个空格。

输入样例:
6
Hello ?
Good to chat with you
can you speak Chinese?
Really?
Could you show me 5
What Is this prime? I,don 't know
输出样例:
Hello ?
AI: hello!
Good to chat with you
AI: good to chat with you
can you speak Chinese?
AI: I can speak chinese!
Really?
AI: really!
Could you show me 5
AI: I could show you 5
What Is this prime? I,don 't know
AI: what Is this prime! you,don’t know
自己无法编译用c++11就行了
非常暴力的模拟,昨天电脑蓝屏(昨天写了30min以上),今天早上复原了下,然后也写了20min,还是15分,不过换电脑导致我没时间看别的题目,我还傻逼的继续写这个题

#include <bits/stdc++.h>
using namespace std;
int main()
{
   
    int T;
    cin>>T;
    cin.get();
    while(T--)
    {
   
        string s;
        getline(cin,s);
        cout<<s<<"\nAI: ";
        int f1=0,n=s.length();
        for(int i=0; i<n; i++,f1++)
            if(s[i]!=' ')break;
        s=s.substr(f1);
        n=s.length(),f1=n;
        for(int i=n-1; i>=0; i--,f1--)
            if(s[i]!=' ')break;
        s=s.substr(0,f1);
        n=s.length();
        //cout<<"@"<<s<<"\n";
        string tmp;
        for(int i=0; i<n; i++)
        {
   
            if(s[i]>='A'&&s[i]<='Z')
            {
   
                if(s
对于估值达到一亿美元的AI项目的核心代码和技术细节,通常涉及多个复杂的技术栈和领域专业知识。这类项目的实现不仅依赖于先进的算法模型,还涉及到大规模的数据处理能力、高效的计算资源管理以及特定应用场景下的优化。 ### 数据获取与预处理 为了构建如此规模的AI系统,数据源的选择至关重要。可以考虑多种类型的输入数据,包括但不限于行情数据、财务数据、宏观数据和舆情数据[^1]。这些数据可以通过网站下载、第三方API接口、专用客户端工具或是自动化网络爬虫等方式来收集。高质量的数据集是训练有效机器学习模型的基础。 ### 技术架构设计 针对大型AI系统的开发,推荐采用微服务架构模式,以便更好地支持布式部署和服务间的解耦合。以下是几个关键技术组件: #### 云平台基础设施 利用主流云计算服务平台(如AWS, Azure, Google Cloud),能够提供弹性伸缩能力和按需付费机制,满足不同阶段对算力的需求变化。 #### 大数据析框架 Hadoop/Spark等大数据析引擎可以帮助处理海量历史记录,并从中提取有价值的信息用于后续建模过程。 #### 深度学习库 TensorFlow 或 PyTorch 是当前最流行的两个开源深度学习框架之一,在图像识别、自然语言处理等领域有着广泛的应用案例和支持社区。 ```python import tensorflow as tf from tensorflow.keras import layers, models # 定义简单的卷积神经网络结构作为示例 model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(1)) ``` 此段Python代码展示了如何创建一个基础版本的CNN(Convolutional Neural Network),适用于某些视觉任务中的特征提取工作。 ### 应用场景定制化调整 根据不同行业的具体需求特点,可能还需要引入额外的专业知识模块来进行针对性改进。例如金融行业可能会更加关注风险控制策略的设计;医疗健康方向则要注重隐私保护法规遵循等方面的要求。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值