摘要
这篇文章主要回顾了一些最突出的LLMs(GPT, LLaMA, PaLM)并讨论了它们的特点、贡献和局限性,就如何构建增强LLMs做了一个技术概述,然后调研了为LLM训练、微调和评估而准备的N多种流行数据集,审查了使用的LLM评价指标,在一组有代表性的基准上比较了几个流行的LLMs;最后,该论文讨论了开放性的挑战和未来的研究方向。
前言
大语言模型发展的四个阶段:①、统计语言模型;②、神经语言模型;③、预训练语言模型;④、大语言模型。
①、统计语言模型:
统计语言模型是一种基于统计学的自然语言处理模型,它的主要任务是计算一段文本中词语序列的概率,并根据这个概率对文本进行预测或者排序。统计语言模型的核心思想是通过对大量语料库中的统计信息进行分析,建立词语之间的概率关系,然后用这些概率关系来预测或生成新的文本。以下是统计语言模型的一些主要原理:
-
简单的计数方法
最早的统计语言模型是基于n-gram模型的,它通过计算连续n个词语序列在语料库中出现的次数,然后除以所有可能的n个词语序列的总和来得到概率。例如,一个二元模型(bigram model)会计算两个相邻词语对的共现频率,三元模型(trigram model)则会计算三个相邻词语的共现频率。 -
条件概率
统计语言模型通常使用条件概率来表示词语之间的关系。条件概率P(wi|wi-1)表示在词语wi-1出现的情况下,词语wi出现的概率。在n-gram模型中,可以直接使用共现频率来计算这些条件概率。 -
链接字链(LMs)
更高级的统计语言模型,如n-gram模型,会考虑更长的上下文范围。但是,当n变得非常大时,模型的复杂性和所需的内存会迅速增加。为了解决这个问题,人们开始研究基于统计的上下文无关语言模型(CILMs),如朴素贝叶斯分类器和隐马尔可夫模型(HMMs)。这些模型使用更复杂的数学形式来估计条件概率,而不是简单地依赖于n-gram的计数。 -
高级主题
除了上述基本概念外,现代的统计语言模型还包括一些更高级的主题,如平滑技术: 由于语料库中可能存在未见过的词语序列,我们需要使用平滑技术来处理这些情况。常见的平滑技术有拉普拉斯平滑和插值平滑。上下文敏感的模型: 如神经网络语言模型(NNLMs),它们使用深度学习技术来学习词语的分布式表示,并捕捉更复杂的上下文关系。混合模型: 结合了不同语言模型的优点,如GMM-UBM和HMM-N-gram的混合模型。 -
应用
统计语言模型在许多自然语言处理任务中都有应用,包括语音识别、机器翻译、文本生成、情感分析和问答系统等。通过评估和优化这些模型,我们可以提高自然语言处理的准确性和效率。
②、神经语言模型:
Neural language models (NLMs) 是一类使用神经网络来学习自然语言的模型。与传统的基于统计的语言模型相比,NLMs 能够捕捉到词语之间更复杂的关系,并通过学习抽象的特征表示来提高预测和生成文本的能力。以下是 NLMs 的一些主要原理:
-
词嵌入
词嵌入是一种将高维词向量映射到低维连续空间的技术。在 NLM 中,每个词都被表示为一个多维向量,这些向量捕获了词语之间的语义和语法关系。训练过程中,模型学习到如何在上下文中理解和预测词语,从而优化这些向量。 -
编码器和