LASSO原理及代码实现

本文介绍了LASSO算法,通过对比显示其能令某些特征参数为0,相较于岭回归的优势。并展示了使用sklearn库进行LASSO实现的内容,同时提及ElasticNet作为LASSO和岭回归的结合,能在相关变量中保持稳定,并不强制特征选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LASSO
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
从这个对比图可以看出,LASSO算法使得某个点的特征参数为0,例如横坐标原点对应的的值,而岭回归很难实现。

sklearn实现:

# 创建模型
model = linear_model.LassoCV()
model.fit(x_data, y_data)

# lasso系数
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值