估算总体标准差的极差均值估计法sigma = R/d2

总体标准差的估算值可以通过将平均极差除以合适的常数因子d2来计算。这个估算方法是用于估算总体标准差的一种常见方法,尤其在质量控制和过程监控中经常使用。

总体标准差的估算值 = (平均极差) / d2

其中:

  • "总体标准差的估算值" 表示用极差方法估算的总体标准差。
  • "平均极差" 是各个子组的极差的平均值。
  • "d2" 是根据采样方法和子组样本容量选择的常数因子,用于校正极差以估算总体标准差。

# 估算整体数据集的标准差
R = np.mean(range_per_group) # 极差均值
d2 = 2.847  # 根据具体的采样方法选择合适的d2值
std = R / d2

 

 

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm
plt.rcParams['font.sans-serif'] = ['SimHei']  # 防止中文标签乱码
plt.rcParams['axes.unicode_minus'] = False


# 准备数据,这里使用随机数据作为示例
# data = [np.random.randn(8) for _ in range(10)]
data = np.random.randn(8, 8)
# 计算每个分组的极差
range_per_group = [np.ptp(group) for group in data]

# 扁平化数据
flat_data = np.concatenate(data)

# 计算各组均值的均值
x_bar_avg = np.mean([np.mean(group) for group in data])

# 估算整体数据集的标准差
R = np.mean(range_per_group)
d2 = 2.847  # 根据具体的采样方法选择合适的d2值
std = R / d2

# 生成正态分布的概率密度曲线,使用各组均值的均值作为中心
x = np.linspace(min(flat_data), max(flat_data), 100)
pdf = norm.pdf(x, loc=x_bar_avg, scale=std)

# 绘制直方图
plt.hist(flat_data, bins=8, density=True, alpha=0.5, color='b', label='直方图')

# 绘制概率密度曲线
plt.plot(x, pdf, color='r', label='概率密度曲线')

# 添加标签和标题
plt.xlabel('X轴标签')
plt.ylabel('Y轴标签')
plt.title('整体数据的直方图和使用各组均值的均值生成的概率密度曲线')

# 显示图形
plt.legend()
plt.show()
  1. X-R 控制图(Individuals and Range Control Chart):

    • 通常适用于小样本容量,尤其是子组样本容量小于 10 的情况。
    • X-R 控制图是用于监控过程变异性的一种方法,范围(Range,R)用于度量子组内的变异性。
    • 适用于较小的子组容量,因为大样本容量的情况下,范围(R)可能会变得相对稳定,难以检测到小幅度的过程变异。
  2. X-S 控制图(Individuals and Standard Deviation Control Chart):

    • 通常适用于较大的样本容量,尤其是子组样本容量较大的情况。
    • X-S 控制图用于监控过程的稳定性,标准差(Standard Deviation,S)用于度量子组内的变异性。
    • 适用于较大的样本容量,因为在小样本容量情况下,估算标准差可能会不够稳定。

总之,X-R 控制图通常用于小样本容量,而 X-S 控制图更适用于较大的样本容量,因为它们分别适应不同的过程变异性度量方法。选择哪种控制图取决于您的具体应用和数据情况,以确保有效地监控过程的稳定性和变异性。

----------------------------------

控制图(如X-R图和X-S图)是一种用于估算总体标准差的方法,通常应用于质量控制和过程监控。这些方法利用过程中的变异性来估算总体标准差。

具体来说:

  1. X-R 图(Individuals and Range Control Chart):在X-R图中,X图用于监测过程的平均值,而R图用于监测子组样本的极差。通过监控这两个图,您可以估算过程的总体标准差。总体标准差的估算方法如下:

    总体标准差的估算值 = R图的平均极差 / d2

    这里,R图的平均极差是R图中各个子组极差的平均值,d2是一个根据样本容量选择的常数因子。

  2. X-S 图(Individuals and Standard Deviation Control Chart):在X-S图中,X图用于监测过程的平均值,而S图用于监测子组样本的标准差。通过监控这两个图,您可以估算过程的总体标准差。总体标准差的估算方法如下:

    总体标准差的估算值 = S图的平均标准差 / c4

    这里,S图的平均标准差是S图中各个子组标准差的平均值,c4是一个根据样本容量选择的常数因子。

这两种控制图方法能够提供过程的实时监测和总体标准差的估算,有助于及时发现和纠正过程中的变异性。它们在质量控制和过程改进中发挥着重要的作用。

1组2组3组4组5组6组7组8组9组10组11组12组
6.46.86.36.16.46.66.36.46.36.76.66.8
7.06.47.16.86.96.06.95.66.75.97.06.2
6.46.46.55.96.86.16.66.26.65.86.56.5
6.46.36.45.86.56.26.26.06.46.36.46.2
7.16.57.06.06.95.96.85.86.36.27.15.8
### CentOS 镜像中 README 文件的作用 README 文件通常作为文档的一部分,在操作系统或软件包的分发过程中起到指导和说明的作用。对于 CentOS 的镜像而言,其 README 文件的主要意义在于提供关于该版本的操作系统的关键信息以及安装指南。 #### 1. 提供版本信息 README 文件会明确指出当前镜像是哪个具体版本的 CentOS,例如 `CentOS Linux release 7.9.2009 (Core)`[^1]。这有助于用户确认所下载的是正确的发行版,并了解与其兼容的硬件和软件环境。 #### 2. 描述安装前准备事项 在实际部署之前,用户可能需要完成一些必要的准备工作,比如安装工具 Git 或者其他依赖项。这些内容往往会在 README 中有所提及,帮助新手快速上手。 #### 3. 解决常见问题 针对可能出现的问题,如文件上传验证通过后的反馈机制——返回文件名表示成功[^2];或者如何正确配置服务端口映射等复杂场景下的解决方案也可能被记录下来以便查阅。 #### 4. 列举第三方库源地址 有时为了扩展功能,官方文档还会给出获取额外资源的方法论实例:“`wget http://downloads.sourceforge.net/tcl/tcl8.6.1-src.tar.gz`” 就是用来示范怎样从外部站点拉取所需组件的例子之一[^3]。 #### 5. 展示高级设置教程 除了基本操作外,更深入的技术细节也会包含其中,例如为了让 NVM 成为全局变量而修改特定路径下的脚本文件 `/etc/profile.d/nvm.sh` [^4] ,或者是利用 FTP 协议传输大容量数据时推荐采用 Binary Mode 来保持文件完整性[^5]。 综上所述,README 不仅是一个简单的介绍性文本,更是连接开发者与最终用户的桥梁,它承载着丰富的背景资料和技术支持,使得整个安装过程更加顺畅高效。 ```bash # 示例命令展示如何查看本地是否存在类似的 readme 文档 ls /path/to/your/downloaded/image/*.txt | grep -i "readme" cat /path/to/found/readme.txt ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值