
顶会论文种子库
文章平均质量分 86
本专栏汇集了可用于顶会投稿的论文种子,可以作为个人写作提示及大模型提示输入。每个种子包含论文的关键词、摘要、核心观点、创新点等关键信息,并以结构化的格式呈现,方便理解和学习。这些种子可以帮助个人和大模型完成高质量的论文草稿。论文种子涵盖多种研究方向和主题,助力研究人员快速撰写论文,提高科研效率。
结构化文摘
北京理工大学计算机系硕士,中科院计算所工学博士学位,中科院计算所副研究员,硕士生导师。主要研究方向为分布式系统、云计算、大数据处理以及信息物理融合系统(Cyber-Physical Systems)。目前已合作发表学术专著一部,杂志、会议论文近60篇。作为负责人和主要人员承担了多项相关国家科研任务。
展开
-
顶会论文种子 Image-Guided Local Editing of Neural Radiance Fields
Neural Radiance Fields (NeRFs) have emerged as a powerful representation for 3D scenes, capturing intricate details and view-dependent effects. However, existing methods for editing NeRFs原创 2024-12-16 10:03:53 · 68 阅读 · 0 评论 -
顶会论文种子 Semantic Implicit Stylization: Local Texture Editing of Neural Implicit Representations
This paper introduces Semantic Implicit Stylization (SIS), a novel approach for local stylization of 3D objects represented as neural implicit functions.原创 2024-12-16 09:48:12 · 170 阅读 · 0 评论 -
顶会论文种子 Sketch2Shape: AI-powered Local 3D Shape Editing with Sketch-based Guidance
3D modeling often involves intricate and time-consuming processes to achieve desired shapes and textures. We introduce Sketch2Shape, a novel approach that leverages the intuitiveness of sketching for efficient and precise local editing of 3D shapes. Our me原创 2024-12-15 17:05:08 · 169 阅读 · 0 评论 -
顶会论文种子 NeRF-Edit: 3D-Supervised Global Editing of Neural Radiance Fields
Neural Radiance Fields (NeRFs) have emerged as a powerful representation for 3D scenes, but their manipulation for editing purposes remains a challenging problem. We introd原创 2024-12-15 16:52:11 · 65 阅读 · 0 评论 -
顶会论文种子 Graph-Based Vision Transformers for Fisheye Image Perception
Fisheye cameras are crucial for autonomous driving due to their wide field of view, but their images present significant distortion challenges. Traditional methods often project these images onto a 2D plane or sphere, leading to information loss and inaccu原创 2024-12-14 15:33:46 · 182 阅读 · 0 评论 -
顶会论文种子 Local Vision Transformers for Efficient and Accurate Spherical Data Processing
Spherical data processing poses unique challenges due to the distortions introduced by projecting the sphere onto a plane. Existing methods often rely on global spatial mixing, which can be computationally expensive. In this paper, we propose a novel appro原创 2024-12-14 15:16:43 · 42 阅读 · 0 评论 -
顶会论文种子 Point Cloud Transformer with Global Attention for 3D Object Recognition
Title: Point Cloud Transformer with Global Attention for 3D Object RecognitionAbstract:This paper introduces a novel vision transformer architecture designed to process point cloud data directly using global attention mechanisms. Unlike traditional methods原创 2024-12-13 10:23:35 · 450 阅读 · 0 评论 -
顶会论文种子 Distortion-Aware Vision Transformer for Fisheye Image Processing
Title: Distortion-Aware Vision Transformer for Fisheye Image ProcessingAbstract:Fisheye cameras, with their ultra-wide field of view, are becoming increasingly prevalent in applications like autonomous driving and robotics. However, the significant distort原创 2024-12-13 10:28:43 · 615 阅读 · 0 评论 -
拟投顶会论文的详细提纲 Multi-View Human Mesh Recovery with Segmentation Masks and 3D Key-point Guidance
Title: "Multi-View Human Mesh Recovery with Segmentation Masks and 3D Key-point Guidance"Abstract:This paper addresses the challenge of accurately recovering 3D human meshes from multi-view images, particularly in the presence of occlusions. We propose a n原创 2024-12-12 16:55:37 · 413 阅读 · 0 评论 -
拟投顶会的论文详细提纲 Diffusion-based 3D Human Mesh Recovery from Multi-view Images with Segmentation Masks
Title: Diffusion-based 3D Human Mesh Recovery from Multi-view Images with Segmentation MasksAbstract:This paper addresses the challenging problem of 3D human mesh recovery from multi-view images in the presence of occlusions. We propose a novel diffusion-b原创 2024-12-11 17:28:48 · 471 阅读 · 0 评论 -
拟投顶会的论文详细提纲“Weakly Supervised 3D Human Mesh Recovery from Depth Images using Sparse Annotations”
Title: Weakly Supervised 3D Human Mesh Recovery from Depth Images using Sparse AnnotationsAbstract: This paper addresses the challenge of 3D human mesh recovery from depth images in scenarios where full 3D ground truth annotations are scarce. We propose a原创 2024-12-11 17:37:56 · 592 阅读 · 0 评论 -
拟投顶会论文的详细提纲 Transformer-based Multi-view Human Mesh Recovery with Occlusion Handling
This paper addresses the challenging problem of 3D human mesh recovery from multi-view images in the presence of occlusions. Existing methods often struggle with accurately reconstructing human meshes when body parts are原创 2024-12-12 09:15:45 · 308 阅读 · 0 评论 -
拟投顶会论文的详细提纲 Temporal Diffusion for Robust Human Mesh Recovery in Videos
Title: "Temporal Diffusion for Robust Human Mesh Recovery in Videos"Abstract: This paper proposes a novel method for recovering human meshes from videos, even in the presence of occlusions and challenging poses. Our approach, called Temporal Diffusion, lev原创 2024-12-12 09:42:23 · 214 阅读 · 0 评论