结构化文摘
码龄4年
关注
提问 私信
  • 博客:59,174
    问答:12
    视频:19
    59,205
    总访问量
  • 141
    原创
  • 22,892
    排名
  • 902
    粉丝
  • 4
    铁粉
  • 学习成就

个人简介:北京理工大学计算机系硕士,中科院计算所工学博士学位,中科院计算所副研究员,硕士生导师。主要研究方向为分布式系统、云计算、大数据处理以及信息物理融合系统(Cyber-Physical Systems)。目前已合作发表学术专著一部,杂志、会议论文近60篇。作为负责人和主要人员承担了多项相关国家科研任务。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2020-08-31
博客简介:

结构化论文学习和写作

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    854
    当月
    1
个人成就
  • 获得1,012次点赞
  • 内容获得4次评论
  • 获得538次收藏
创作历程
  • 80篇
    2024年
  • 46篇
    2023年
  • 15篇
    2021年
成就勋章
TA的专栏
  • 一分钟看懂23年百篇AI重要论文
    付费
    24篇
  • 一分钟看懂人工智能顶会论文CVPR
    付费
    63篇
  • 一分钟看懂操作系统顶会论文OSDI
    付费
    34篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Adding Conditional Control to Text-to-Image Diffusion Models

大家好!今天我要给大家介绍一篇发表在计算机视觉领域顶级会议 ICCV 上的论文。这篇论文的题目是《为文本到图像的扩散模型添加条件控制》。 论文提出了一个名为 ControlNet 的神经网络结构,它可以用来更精确地控制大型文本到图像扩散模型的图像生成过程。ControlNet 允许用户添加额外的条件,例如边缘、深度、分割、人体姿势等,来指导图像生成过程。 ControlNet 的架构设计得非常鲁棒和高效,无论数据集大小都可以有效地工作。此外,论文通过各种实验和用户研究证明了 ControlNet 的有效性。
原创
发布博客 2024.10.29 ·
17 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

5分钟看懂CVPR24最佳论文 “生成式图像动力学”

发布视频 2024.09.25

FAST: a Fused and Accurate Shrinkage Tree for Heterogeneous Treatment Effects Estimation

我们采用以下六个分类标准: 根据上述六个标准,本文的研究可以归类如下:
原创
发布博客 2024.06.13 ·
127 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Causal Effect Identification in Uncertain Causal Networks

我们采用以下六个分类标准为:数据模态:因果结构知识:识别策略:因果效应类型:未观察到的混杂因素的存在:方法论方法: 根据上述六个标准,这篇论文的研究可以归类如下:
原创
发布博客 2024.06.13 ·
225 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

BubbleML: A Multiphase Multiphysics Dataset and Benchmarks for Machine Learning

我们使用以下六个分类标准: 本文在以上六个标准中的分类如下:
原创
发布博客 2024.06.07 ·
267 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ANTN: Bridging Autoregressive Neural Networks and Tensor Networks for Quantum Many-Body Simulation

这六个标准为量子多体物理、量子计算和相关领域的分类研究提供了一个全面的框架。**研究领域:**量子多体物理学、机器学习/人工智能。**方法论:**张量网络(TN)、神经网络(NN)。**维度:**一维(1D)、二维(2D)。**应用:**量子态学习、基态计算。**系统类型:**量子比特系统。**理论与实验:**理论。
原创
发布博客 2024.06.07 ·
202 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

Label Correction of Crowdsourced Noisy Annotations with an Instance-Dependent Noise Transition Mode

我们可以采用以下六个分类标准:本文的研究可以根据上述6个标准进行如下分类:
原创
发布博客 2024.06.06 ·
204 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏

Task-aware Distributed Source Coding under Dynamic Bandwidth

虽然本文提供了一些理论分析(例如引理 3.1),但其主要贡献是开发了一种实用的算法 (NDPCA),用于动态带宽约束下的任务感知分布式源编码。本文的核心重点是任务感知压缩,其目标是优化压缩以实现特定下游任务(例如对象检测、机械臂操作)的性能。该方法将神经网络与传统 PCA 相结合,以学习有效的表示以进行压缩,同时适应不同的带宽。**数据来源的数量:**分布式来源。**任务感知:**任务感知。**压缩方法:**神经网络。**理论与应用:**应用。**带宽分配:**动态。**数据类型:**图像。
原创
发布博客 2024.06.06 ·
60 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ESSEN: Improving Evolution State Estimation for Temporal Networks using Von Neumann Entropy

这个标准对所研究的网络结构类型进行分类。这个标准确定了研究应用的真实世界背景。这个标准区分了研究中使用的特定熵度量。这个标准描述了用于分析网络的技术。这个标准规定了研究旨在解决的问题。这个标准突出了研究的核心目标。
原创
发布博客 2024.06.05 ·
235 阅读 ·
8 点赞 ·
0 评论 ·
0 收藏

Scalable Membership Inference Attacks via Quantile Regression

我们使用以下六个分类标准:动机:方法论:检验统计量:对攻击者知识的假设:数据集类型:模型架构: 本文的具体分类是:
原创
发布博客 2024.06.05 ·
153 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

Ambient Diffusion: Learning Clean Distributions from Corrupted Data

我们采用以下六个标准,用于对从损坏数据中学习的领域的研究进行分类:**学习范式:**该标准区分模型如何从数据中学习:**损坏模型:**该标准侧重于损坏过程的性质:**模型架构:**此标准对所用模型的基础结构进行分类:**训练目标:**该标准描述了模型优化旨在实现的具体目标:**应用:**该标准强调了研究的实际用例:**理论保证:**该标准表明研究中的理论严谨性水平:
原创
发布博客 2024.06.04 ·
139 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

TexQ: Zero-shot Network Quantization with Texture Feature Distribution Calibration

我们使用以下这六个标准对网络量化和相关领域的研究进行分类。
原创
发布博客 2024.06.04 ·
512 阅读 ·
19 点赞 ·
0 评论 ·
0 收藏

Self-Supervised Motion Magnification by Backpropagating Through Optical Flow

本文采用以下六个标准对选题进行分类:放大类型:运动估计:学习范式:训练数据:放大目标:模型架构: 根据这六个标准,本文的研究可以归类如下:
原创
发布博客 2024.06.03 ·
198 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

Provable Adversarial Robustness for Group Equivariant Tasks: Graphs, Point Clouds, Molecules, and Mo

我们采用以下六个标准,旨在对机器学习领域的研究论文进行分类,特别是那些涉及模型鲁棒性和等变性的研究。该标准区分了探索等变性和鲁棒性交叉点的研究、仅关注其中一个属性的研究,或两者都不关注的研究。该标准区分提供关于模型鲁棒性的严格、可证明保证的研究与依赖经验证据的研究。该标准区分关注特定模型架构的研究和提出适用于更广泛模型的方法的研究。该标准区分主要为理论性质的研究和更偏向经验或应用的研究。该标准根据模型设计处理的数据类型对研究进行分类。该标准区分模型预测应保持一致的变换类型。
原创
发布博客 2024.06.03 ·
282 阅读 ·
8 点赞 ·
0 评论 ·
0 收藏

Attentive Transfer Entropy to Exploit Transient Emergence of Coupling Effect

这些是对所研究的网络结构和性质的潜在假设。:这区分了这些方法是否需要标记数据进行训练。:指的是实现研究目标所使用的技术和方法。:表示研究应用的特定领域或地区。:指的是用于分析的数据的格式。:指的是研究的基本目的。:信息论和神经网络。
原创
发布博客 2024.05.31 ·
201 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

PopSign ASL v1.0: An Isolated American Sign Language Dataset Collected via Smartphones

*目标人群:**主要是聋人手语使用者,但也与听力手语使用者和普通人群相关。**研究方法:**主要是定量的,但也有一些定性元素。**模态:**孤立手语识别 (ISLR)。**数据收集环境:**野外/自然环境。**手语:**美国手语 (ASL)。**研究目标:**数据集创建。
原创
发布博客 2024.05.31 ·
74 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Gigastep - One Billion Steps per Second Multi-agent Reinforcement Learning

这种分类展示了 Gigastep 作为一个研究平台的多功能性,因为它可以适应智能体视角、环境动态、可观察性级别、任务结构、动作空间和观察空间的各种组合。这种灵活性使研究人员能够探索各种 MARL 问题,并在不同条件下评估不同算法的性能。
原创
发布博客 2024.05.30 ·
66 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Adaptive Selective Sampling for Online Prediction with Experts

我们使用以下标准,为在线预测和主动学习研究提供一个结构化的分类和区分方法,正如论文及其参考文献中所讨论的那样。关于数据/专家的假设:对抗性(重点关注最佳专家场景)这描述了学习算法如何接收有关其预测正确性的信息。这些是关于数据性质和提供建议的专家的基本假设。这描述了算法用于进行预测的特定策略或策略系列。这是指研究旨在解决的基本问题。*反馈机制:标签高效/选择性采样。算法方法:指数加权平均(EWA)这是衡量预测算法成功的方法。这是指学习发生的整体框架。
原创
发布博客 2024.05.30 ·
142 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

解锁未标记图像的力量:深入探索计算机视觉中无监督卷积神经网络

CNN 通过直接从图像数据中自动学习分层特征表示,彻底改变了计算机视觉。它们的架构通常由卷积层(将过滤器应用于提取局部特征)、池化层(对特征图进行下采样)和全连接层(执行分类或其他任务)组成。卷积层是 CNN 的核心构建块,使它们能够捕获图像中的空间关系。通过将一组可学习的过滤器应用于输入图像,网络学习在不同抽象级别检测边缘、纹理和更复杂的模式。
原创
发布博客 2024.05.29 ·
1226 阅读 ·
19 点赞 ·
0 评论 ·
6 收藏

## 揭开疾病预测的神秘面纱:面向医疗专业人士的sklearn逻辑回归逐步指南

从本质上讲,逻辑回归是一种统计模型,用于预测事件发生的概率。在医疗保健领域,这一事件可能是疾病的存在与否、治疗的成功与否或任何其他二元结果。与预测连续值的线性回归不同,逻辑回归使用逻辑函数转换其输出,以生成介于 0 和 1 之间的概率值。
原创
发布博客 2024.05.29 ·
868 阅读 ·
18 点赞 ·
0 评论 ·
20 收藏
加载更多