题目地址
题目大意:给出n,m(n<=100,m<=50),一个mXm的二维数组,a[i][j]表示第i个note到第j个note的优美值(从1开始),n个数字(note)b1,b2......bn,正数不可更改,负数(-1)可改成任意小于等于m的值,求给出的n个note之间最大的优美值,即求sum(a[b1][b2]+a[b2][b3]+......+a[bn-1][bn])的最大值
解题思路:dp[i][j]表示前i个数能构成的以j结尾的最大值,分相邻2个bi的正负情况讨论即可
#include <bits/stdc++.h>
using namespace std;
const int maxn = 100+10;
int a[maxn][maxn],b[maxn],dp[maxn][maxn];
int main()
{
int T,n,m;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i = 1; i <= m; i++)
for(int j = 1; j <= m; j++)
scanf("%d",&a[i][j]);
for(int i = 1; i <= n; i++)
scanf("%d",&b[i]);
memset(dp,0,sizeof(dp));
for(int i = 2; i <= n; i++)
{
if(b[i] > 0 && b[i-1] > 0)
{
dp[i][b[i]] = dp[i-1][b[i-1]]+a[b[i-1]][b[i]];
}
else if(b[i] < 0 && b[i-1] > 0)
{
//dp[i][1] = dp[i-1][b[i-1]]+a[b[i-1]][1];
for(int j = 1; j <= m; j++)
{
dp[i][j] = max(dp[i][j],dp[i-1][b[i-1]]+a[b[i-1]][j]);
}
}
else if(b[i] > 0 && b[i-1] < 0)
{
//dp[i][b[i]] = dp[i-1][1]+a[1][b[i]];
for(int j = 1; j <= m; j++)
{
dp[i][b[i]] = max(dp[i][b[i]],dp[i-1][j]+a[j][b[i]]);
}
}
else if(b[i] < 0 && b[i-1] < 0)
{
for(int j = 1; j <= m; j++)
{
for(int k = 1; k <= m; k++)
{
dp[i][j] = max(dp[i][j],dp[i-1][k]+a[k][j]);
}
}
}
}
if(b[n] > 0)
printf("%d\n",dp[n][b[n]]);
else
{
int maxx = -1;
for(int i = 1; i <= m; i++)
maxx = max(maxx,dp[n][i]);
printf("%d\n",maxx);
}
}
return 0;
}