10.CNN应用于手写数字识别


代码运行平台为jupyter-notebook,文章中的代码块,也是按照jupyter-notebook中的划分顺序进行书写的,运行文章代码,直接分单元粘入到jupyter-notebook即可。整体代码给出的注释还是挺简单明了的。

1.导入第三方库

import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D,Flatten
from tensorflow.keras.optimizers import Adam

2.加载数据及数据预处理

# 载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data()
#  (60000, 28, 28)
print("x_shape:\n",x_train.shape)
# (60000,)  还未进行one-hot编码 需要后面自己操作
print("y_shape:\n",y_train.shape)
# (60000, 28, 28) -> (60000,28,28,1)=(图片数目,图片高度,图片宽度,图片的通道数) reshape()中参数填入-1的话可以自动计算出参数结果 除以255.0是为了归一化
# 归一化很关键哈,可以大大减少计算量
x_train = x_train.reshape(-1,28,28,1)/255.0
x_test = x_test.reshape(-1,28,28,1)/255.0
# 换one hot格式
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)

3.训练模型

# 定义顺序模型
model = Sequential()

# 第一个卷积层  注意第一层要写输入图片的大小 后面的层可以忽略
# input_shape 输入平面
# filters 卷积核/滤波器个数
# kernel_size 卷积窗口大小
# strides 步长
# padding padding方式 same/valid
# activation 激活函数
model.add(Convolution2D(
    input_shape=(28,28,1),
    filters=32,
    kernel_size=5,
    strides=1,
    padding="same",
    activation="relu"
))

# 第一个池化层
model.add(MaxPooling2D(
    pool_size=2,
    strides=2,
    padding="same"
))
# 第二个池化层
model.add(Convolution2D(filters=64,kernel_size=5,strides=1,padding="same",activation="relu"))
# 第二个池化层
model.add(MaxPooling2D(pool_size=2,strides=2,padding="same"))
# 把第二个池化层的输出扁平化为1维
model.add(Flatten())
# 第一个全连接层
model.add(Dense(units=1024,activation="relu"))
# Dropout 随机选用50%神经元进行训练
model.add(Dropout(0.5))
# 第二个全连接层
model.add(Dense(units=10,activation="softmax"))

# 定义优化器 设置学习率为1e-4
adam = Adam(lr=1e-4)

# 定义优化器,loss function,训练过程中计算准确率
model.compile(optimizer=adam,loss="categorical_crossentropy",metrics=["accuracy"])

# 训练模型
model.fit(x_train,y_train,batch_size=64,epochs=10)

# 评估模型
loss,accuracy=model.evaluate(x_test,y_test)

print("test loss:",loss)
print("test accuracy:",accuracy)

代码运行结果:
在这里插入图片描述

代码中需要注意的一些点,在代码注释中也给出了解释和提醒。

注意

  • 搭建神经网络的第一层要写输入图片的大小 后面的层可以忽略
实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip实验CNN数字手写体识别基于python jupyter notebook android (可运行)可安装在手机.zip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

布兹学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值