暨南大学智科院人工智能招生计划分析

1、招生计划是什么

首先我来简单介绍一下这个招生计划是什么,就是比如你要报考人工智能专业,然后他会在七月份左右(不同学校不同,反正是在考研前)告知你这个专业会招多少人,比如说招30个人,这就是招生计划,但是这个人数并不是最后录取的人数,因为有些学校在出复试方案(考研初试成绩出来后一个星期左右出,不同学校不同)的时候可能会对这个人数进行扩招,他招生计划是招30个人,但是复试方案出来后,复试方案上写的是招39个人,这样的话,那么他就扩招了9个人,这时真正的招生人数就是39个人,所以要以复试方案的招生人数为主,而这个招生计划相当于给了一个基准线,正常情况一定会招大于等于基准线的人数。然后还有就是这个招生人数,通常是包含了推免人数的,大家还要注意一下这一点。

2、招生计划的分析

弄清楚招生计划是什么了之后,你自己应该已经确定好了自己要报的专业,对吧,那么接下来这里我们以暨南大学的人工智能来分析一下。这里再补充说明一下,通常我们都会查看近两年的一个招生人数趋势,你再往前看的话,可能就不再具有什么参考价值了。这里我们主要分析一下2023年和2024年暨南大学人工智能的一个招生人数趋势,还有这个招生计划通常是要与录取人数结合来分析的,单独分析这个招生计划其实没有很大的意义。
在这里插入图片描述

(1)2024招生计划分析

上面的图片中有2024年暨南大学智能科学与工程学院的一个研究生

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

布兹学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值