python关于FIFA球员的数据分析

本文使用Python对FIFA球员数据进行分析,探讨球员年龄分布及能力与薪资的关联。首先检查数据,处理缺失值,接着分析球员年龄分布,通过饼图展示各年龄段占比。然后,通过散点图揭示球员能力值与薪资的分布关系,对数据进行预处理,包括去除欧元符号、'K'标志和零值。整个分析过程在Jupyter Notebook环境下进行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、简介

最近在学习数据分析,这也是python比较热门的一个方向,结合爬虫能分析许多东西,数据是在kaggle上找到的,上面很多实用性很强的数据,每个数据也有国外大佬做的分析实例,可以借鉴

kaggle

本文的分析有两部分:一、运动员的年龄分布。二、运动员能力与薪资的分布关系

!!!本文所有代码都是在python交互模式jupyter下完成的,只是不会用CSDN写入=.=!!!

2、需要用到的库

import pandas as pd 
import matplotlib.pyplot as plt 
#为了让图片显示在交互模式界面
%matplotlib inline     

 3、代码正文

#读取csv文件 
df = pd.read_csv('data.csv') 
df.head()

 

 读取文件后用head()方法可以查看csv文件的前5行,包括索引、标头等信息

 

#判断数据中是否有缺失值 
df.isnull().any()

 

 

#将缺失值填充 
new_df = df.fillna(0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值