火星A+B
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 9139 Accepted Submission(s): 2988
Problem Description
读入两个不超过25位的火星正整数A和B,计算A+B。需要注意的是:在火星上,整数不是单一进制的,第n位的进制就是第n个素数。例如:地球上的10进制数2,在火星上记为“1,0”,因为火星个位数是2进制的;地球上的10进制数38,在火星上记为“1,1,1,0”,因为火星个位数是2进制的,十位数是3进制的,百位数是5进制的,千位数是7进制的……
Input
测试输入包含若干测试用例,每个测试用例占一行,包含两个火星正整数A和B,火星整数的相邻两位数用逗号分隔,A和B之间有一个空格间隔。当A或B为0时输入结束,相应的结果不要输出。
Output
对每个测试用例输出1行,即火星表示法的A+B的值。
Sample Input
1,0 2,1 4,2,0 1,2,0 1 10,6,4,2,1 0 0
Sample Output
1,0,1 1,1,1,0 1,0,0,0,0,0
Source
Recommend
JGShining
这题跟高精度的题差不多就是要注意进位是按素数表进位的。所以要打一个素数表。还有录入数据不能一位一位的存为数字。因为还有某位其值大于9的情况。
#include <stdio.h>
#include<math.h>
#include<string.h>
int a[1000],prime[30];
int change(char *s,int *p)//把字符串转换为数串。返回数串位数
{
int i,j,t,flag=0,c=0,sum=0;//flag用于过滤掉前导0
for(i=0; s[i]!='\0'; i++)
{
if(s[i]>='0'&&s[i]<='9')
{
t=s[i]-'0';
if(t>0)
flag=1;//若有一个数字大于0加以标记
if(sum>0)
sum=sum*10+t;//处理大于9的情况
else
sum=t;
}
else
{
if(flag==1)
p[c++]=sum;
sum=0;
}
}
p[c]=sum;
for(i=0,j=c; i<j; i++,j--)//将数串倒置存放方便运算
{
t=p[j];
p[j]=p[i];
p[i]=t;
}
return c;
}
int main()
{
int i,j,len,s,c=0,len1,len2,p[30],q[30];
char s1[500],s2[500];//开始数组开小了啊!改了几天。。。以后要注意细节问题呀
memset(a,0,sizeof a);
memset(prime,0,sizeof prime);
for(i=2; c<=30; i++)//打一个素数表
{
if(!a[i])
{
prime[c++]=i;
for(j=i; j<=250; j+=i)
a[j]=1;
}
}
while(scanf("%s%s",s1,s2)!=EOF)
{
if(s1[0]=='0'&&s1[1]=='\0'||s2[0]=='0'&&s2[1]=='\0')
break;
memset(p,0,sizeof p);
memset(q,0,sizeof q);
len1=change(s1,p);
len2=change(s2,q);
i=s=0;
len=len1>len2?len1:len2;
while(1)//模拟手算
{
if(s==0&&p[i]==0&&q[i]==0&&i>len)//判断是否运算结束
break;
p[i]=q[i]+p[i]+s;
s=p[i]/prime[i];
p[i]=p[i]%prime[i];
i++;
}
i--;
for(j=i; j>0; j--)//倒序输出
printf("%d,",p[j]);
printf("%d\n",p[j]);
}
return 0;
}
//13,12,6,3,2,1 12,9,5,2,2,1