人工智能 一种现代方法 第2章 智能化智能体

人工智能 一种现代方法 第2章 智能化智能体

2018.3.20


2.1智能体和环境

智能体:通过传感器感知所处环境并通过执行器对该环境产生作用。
感知信息:智能体的感知输入
感知序列:感知信息的集合
智能体函数:将感知序列映射到智能体行动
智能体程序:实现智能体函数


2.2好的行为表现:理性的概念

理性智能体:对于每个可能的感知序列,根据已知的序列提供的证据和智能体内建的先验知识,理性智能体应该选择期望能使其性能最大化的行动。

2.2.1性能度量

性能度量:智能体成功标准的具体化
根据希望智能体达到的结果设计度量,而不是人类认为智能体应该表现的行为设计度量。

2.2.2理性

性能度量、先验知识、可执行行动、感知序列

2.2.3全知者,学习和自主性

理性不等于全知
信息收集是理性的重要部分
自主性:智能体能够尽可能的学习,你不先验知识的不足


2.3环境的本质

2.3.1详细说明人物环境

PEAS(性能Performance,环境 Environment, 执行器Actuators, 传感器Sensors)

2.3.2任务环境的属性

  • 完全可观测和部分可观测
  • 确定的和随机的
  • 片段式和延续式
  • 静态和动态
  • 离散的和连续的
  • 但智能体和多智能体

2.4智能体的结构

智能体 = 体系结构 + 程序
体系结构为程序提供来自传感器的感知信息

2.4.1智能体程序

每接收到一个新的感知信息,就将其添加到感知序列中,并根据先验知识的对应表得到一个行动。

function TABLE-DRIVEN-AGENT(percept)returns an action
    static:percepts, a sequence, initially empty
    table: a table of action, indexed by percept sequences, initially fully specified

    append percept to the end of percepts
    action <-- LOOKUP(percepts, table)
    return action 

但是想要对每一个感知序列都列出对应的动作表需要巨大的存储空间,即便能存下也很难通过该表进行学习。

2.4.2简单反射型智能体

忽略感知序列,而只针对当前感知选择行动。
状态空间的指数部分变为1

function SIMPLE-REFLEX-AGENT(percept) returns an action 
    static: rules, a set of condition-action rules

    state <-- INTERPRET-INPUT(percept) //将感知信息转化为状态
    rule <-- RULE-MATCH(state, rules) //将状态匹配规则列表中的规则
    action <-- RULE-ACTION(rule) //通过贵的得出对应的行动

2.4.3基于模型的智能体

function SIMPLE-REFLEX-AGENT(percept) returns an action 
    static: state, a description of current world state  
            rules, a set of condition-action rules
            action, the most recent action, initially none

    state <-- UPDATE-STATE(state, action, percept) //将感知信息结合当前状态和动作转化为状态
    rule <-- RULE-MATCH(state, rules) //将状态匹配规则列表中的规则
    action <-- RULE-ACTION(rule) //通过贵的得出对应的行动

2.4.4基于目标的智能体

为了达到目标

2.4.5基于效用的智能体

最大化期望

阅读更多
文章标签: 人工智能
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭