卓越讲坛:指标定理简介

卓越讲坛:指标定理简介

学习过程

刘博教授在提及 A t i y a − S i n g e r Atiya-Singer AtiyaSinger 指标定理前,先从拓扑、几何和复分析的三个现代理论成果开始引入。

先从3维空间中的2维曲面,例如球面、环面等开始谈起:

一、拓扑:

判断两个空间是否同胚为拓扑学的中心问题之一。其中同胚不变量相同为同胚的必要条件,比较常见的同胚不变量有:连通分支数、基本群结构和 E u l e r Euler Euler 数。

其中, E u l e r   数   χ = 2 ( 1 − g ) Euler\,数\,\chi=2(1-g) Eulerχ=2(1g) 分类了所有的定向闭曲面, g g g 为亏格数(可以简单理解为洞的个数),当 g = 0 g=0 g=0 时,就是凸多边形的情形( V − E + F = 2 V-E+F=2 VE+F=2)。

二、几何:

曲面的曲率 K K K 用来度量曲面在每一点的弯曲程度,又叫做高斯曲率。高斯发现它是一个内蕴的量,由曲面自身的度量决定而与外围空间无关。特别地,针对定向闭曲面,有 G u a s s − B o n n e t Guass-Bonnet GuassBonnet 公式: 1 2 π ∫ M K d σ = χ ( M ) \frac{1}{2\pi}\int_MKd\sigma=\chi(M) 2π1MKdσ=χ(M),公式左边是高斯曲率在整个曲面上的积分,高斯曲率是曲面的局部性质,右边 χ ( M ) \chi(M) χ(M) 是定向闭曲面 M M M 对应的 E u l e r Euler Euler 数,是曲面的整体性质,所以 G u a s s − B o n n e t Guass-Bonnet GuassBonnet 公式建立了曲面的局部性质与整体性质之间的联系,同时说明了拓扑量可以由几何来构造。

三、复分析:

经典的 R i e m a n n − R o c h Riemann-Roch RiemannRoch 问题描述如下:

在紧致 R i e m a n n Riemann Riemann S S S 上给定不同的点 z 1 , z 2 , . . . , z N z_1,z_2,...,z_N z1,z2,...,zN 和给定 N N N 个非零整数 m 1 , m 2 , . . . , m N m_1,m_2,...,m_N m1,m2,...,mN , 令 L \mathscr{L} L S S S 上满足下面条件 ( i ) (i) (i) ( i i ) (ii) (ii) 的亚纯函数 f f f 的集合 :

( i ) (i) (i) f f f z i z_i zi 处的重数 ν z i ( f ) ≥ m i \nu_{z_i}(f)≥m_i νzi(f)mi , 其中 i = 1 , 2 , . . , N i=1,2,..,N i=1,2,..,N ;

( i i ) (ii) (ii) f f f 在其余各点 z z z 的重数 ν z ( f ) ≥ 0 \nu_{z}(f)≥0 νz(f)0 ;

求集合 L \mathscr{L} L 的维数 d i m L dim\mathscr{L} dimL .

R i e m a n n Riemann Riemann 不等式给出了维数的下界: d i m L ≥ ∑ m i + 1 − g ( S ) dim\mathscr{L}≥\sum m_i+1-g(S) dimLmi+1g(S) ,其中 g ( S ) g(S) g(S) 表示亏格数。

确定形式由 R o c h Roch Roch 给出: d i m L = ∑ m i + 1 − g ( S ) + i dim\mathscr{L}=\sum m_i+1-g(S)+i dimL=mi+1g(S)+i ,其中 i i i 为满足 ( i ) (i) (i) ( i i ) (ii) (ii) 条件的亚纯函数微分形式的维数。

在一般的 n n n 维空间中,比空间维数低一维的曲面叫做超曲面,而无论是曲线、曲面还是超曲面,都属于一个更一般的概念——流形。

上述三个分支的结论其实在高维紧流形中可以得到推广:

1. E u l e r Euler Euler 数在高维下推广为贝蒂数的交错和:

χ ( M ) = ∑ k = 1 n ( − 1 ) k d i m H k ( M ) \chi(M)=\sum_{k=1}^{n}(-1)^kdimH^k(M) χ(M)=k=1n(1)kdimHk(M),其中 H k ( M ) H^k(M) Hk(M) 表示 k k k 次同调群。

2. G u a s s − B o n n e t − C h e r n Guass-Bonnet-Chern GuassBonnetChern 定理:

对偶数( 2 n 2n 2n )维紧流形有 χ ( M ) = 1 ( 2 π ) n ∫ M P f ( R T M ) \chi(M)=\frac{1}{(2\pi)^n}{\int_MPf(R^TM)} χ(M)=(2π)n1MPf(RTM)

3. H i r z e b r u c h − R i e m a n n − R o c h Hirzebruch-Riemann-Roch HirzebruchRiemannRoch 定理:

d i m L − i dim\mathscr{L}-i dimLi 推广为 χ ( M ) = ∑ k = 0 n ( − 1 ) k d i m H ∂ ‾ k ( M , E ) \chi(M)=\sum_{k=0}^{n}(-1)^kdimH_{\overline\partial}^{k}(M,E) χ(M)=k=0n(1)kdimHk(M,E)

∑ m i + 1 − g ( S ) \sum m_i+1-g(S) mi+1g(S) 推广为 ∫ M T d ( M ) c h ( E ) \int_MTd(M)ch(E) MTd(M)ch(E)

χ ( M ) = ∫ M T d ( M ) c h ( E ) \chi(M)=\int_MTd(M)ch(E) χ(M)=MTd(M)ch(E)

与此同时, H i r z e b r u c h Hirzebruch Hirzebruch 还提出了符号差定理:

M 4 n M^{4n} M4n 4 n 4n 4n 维紧定向流形, H ∗ ( M ) H^*(M) H(M) d e   R h a m de\, Rham deRham 上同调群,定义 J : H 2 n ( M ) × H 2 n ( M ) → R J:H^{2n}(M)×H^{2n}(M)→R J:H2n(M)×H2n(M)R

s i g n ( J ) = ∫ M L ( M ) sign(J)=\int_ML(M) sign(J)=ML(M) ,同时符号差也为该流形的不变量。

不难发现,上述提及的拓扑不变量都能写成积分的形式,而指标定理就是在找寻它们之间共性的过程中发现的:

I n d ( P ) = ∫ T ∗ M A ^ ( T ∗ X ) 2 c h ( σ ( P ) ) I_{nd}(P)=\int_{T^*M}{\hat A(T^*X)^2ch(\sigma(P))} Ind(P)=TMA^(TX)2ch(σ(P)) 为分析的不变量 ,其中 P P P 为某种算子。

特别地,当 P P P 取某些特定的算子,即可得到之前所推广的各种定理。

最后,刘博教授指出:指标定理将拓扑、几何和分析联系在了一起,是数学各分支统一性的很好例证。

个人体会

由于本人非数学专业,所以在听讲的过程中很多地方还是不太能理解,但指标定理的统一性让我深刻体会到了数学之美:指标架起了拓扑、几何和分析三者沟通的桥梁,让某些困难的问题可以进行研究领域的转化从而得到解答。

同时,我对高等代数中部分内容也深有感触:

在高等代数中,同构这个概念架起了两个线性空间之间相互转换的桥梁,因为它保持双射和两者的线性结构。

一个抽象的线性空间在线性同构的意义下与具体列向量空间(坐标空间)是一样的,

任何一个抽象的线性映射(几何)都与表示矩阵诱导的线性映射(代数)是一样的,

从而架起了几何和代数之间的桥梁,当几何问题较难解决时不妨可以转化为矩阵用代数问题去处理,当代数问题较难处理时有时利用几何直观更容易解决。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值