生成对抗网络(GAN)自2014年提出以来,已成为深度学习领域的研究热点。其强大的图像生成能力在众多领域展现出无限潜力。本文将深入探讨GAN的高级技术,分享实践经验,并分析当前GAN研究的最新进展。
一、GAN的核心原理回顾
生成对抗网络(GAN)由生成器(Generator)和判别器(Discriminator)组成,两者通过对抗性训练过程不断优化。生成器的目标是生成能够欺骗判别器的样本,而判别器的目标是准确区分真实样本和生成样本。
二、GAN的高级技术
2.1 GAN的稳定性提升
- Wasserstein GAN (WGAN):通过改进损失函数,解决了传统GAN训练不稳定的问题。
- WGAN-GP:在WGAN的基础上加入梯度惩罚项,进一步提高了训练稳定性。
2.2 GAN的多样性增强
- Least Squares GAN (LSGAN):使用最小二乘损失函数,提高了生成样本的多样性。
- BEGAN:引入了边界平衡的概念,自动调整生成器和判别器的训练速度,以保持两者之间的平衡。
2.3 GAN的扩展与应用
- StackGAN:通过分层生成策略&#x