深度学习实战4--GAN进阶与优化

        GAN  的问题主要有两点:Loss 等于0的梯度消失问题和梯度不稳定以及多样性受损。 前者是因为选择的分布函数使用JS 距离,这个距离不能衡量两个不相交的分布的距离;后者是因为Loss  函数要求KL 距离最小,JS 距离最大,所以梯度不稳定,而且 Loss 函数对正确率要求太大,多样性要求小,所以会造成模型选择大量生成“安全”的“数字1”来降低Loss函数。

        WGAN 使用了EM  距离,保证了多样 性,并且解决了梯度消失的问题,从实验结果来看,多样性是有保证的,但是生成图片的效果 并不好,较难收敛。

        WGAN-GP 的效果好,在第100代的时候,就可以生成多样化、图片清晰的手写数字。 该实验证明了以下两点:

(1)WGAN解决了多样性问题,这也说明,之前原理部分分析的多样性受损确实是由Loss 函数造成的;

(2)WGAN-GP WGAN 效果好,梯度惩罚的效果比 Weight Clipping强,收敛速度快。

WGAN(2017)关WGAN  Loss 函数的图

class discriminator(nn.Module):
    def __init __(self):
    super(discriminator,self).init__()
    self.dis=nn.Sequential(
        nn.Linear(784,256),
        nn.LeakyReLU(0.2),
        nn.Linear(256,256),
        nn.LeakyReLU(0.2),
        nn.Linear(256,1))
    def forward(self,x):
        x=self.dis(x)
        return x

         对于判别器 D 来说,若要使V(G,D)   最大,那么它的Loss  函数就要使-V(G,D) 最小

注释掉GAN判别器D的loss函数,在合适位置写下Loss的新函数

d_loss=torch.mean(fake_out)-torch.mean(real_out)

同理在合适的位置下写下G的新的Loss函数

g_loss=torch.mean(-output)

最后,增加上Weight  Clipping (权重剪裁).Weight  Clipping将所有的参数都变到[一c,c]  内,这里 截断值c=0.05。 截断值c 要根据具体任务具体设置,如果c 过小,会造成梯度消失;如果 c 过大,会造成梯度爆炸。

        梯度消失(Vanishing Gradients)是深度学习中常见的一个问题,特别是在训练深层神经网络时。当网络层数较多时,反向传播过程中梯度会通过多层权重进行连乘,这可能导致梯度变得非常小,以至于网络中的权重更新非常缓慢,从而使得训练过程非常缓慢甚至停滞.

梯度爆炸则是指在训练过程中,梯度随着层数的增加而指数级增长,导致权重更新过大,从而使模型训练变得不稳定。这通常与权重的初始化值过大、学习率过高或网络结构设计不合理有关。

for layer in D.dis:
    if(layer. __class __.__name__=='Linear'):
        layer.weight.requires_grad=False#关闭梯度
        layer.weight.clamp_(-c,c)
        layer.weight.requires_grad=True#打开梯度</
### 回答1: cvae-gan-zoos-pytorch-beginner这个词汇代表一个初学者使用PyTorch框架进行CVAE-GAN(生成式对抗网络变分自编码器)的编码器,这个网络可以在数据集中进行分析学习,并将数据转换为可以生成新数据的潜在向量空间。该网络不需要通过监督学习标签分类,而是直接使用数据的分布。这个编码器的目的是从潜在空间中生成新数据。此模型可以用于不同的任务,例如图像生成和语音生成。 为了实现这一目标,这一模型采用了CVAE-GAN网络结构,其中CVAE(条件变分自编码器)被用来建立机器学习模型的潜在空间,GAN(生成式对抗网络)作为一个反馈网络,以实现生成数据的目的。最后,这个模型需要使用PyTorch框架进行编程实现,并对数据集进行分析和处理,以便输入到模型中进行训练。这个编码器是一个比较复杂的模型,因此,初学者需要掌握深度学习知识和PyTorch框架的相关知识,并有一定的编程经验,才能实现这一任务。 总的来说,CVAE-GAN是一个在生成数据方面取得了重大成就的深度学习模型,可以应用于各种领域,例如图像、语音和自然语言处理等。然而,对于初学者来说,这是一个相对复杂的任务,需要掌握相关知识和技能,才能成功实现这一模型。 ### 回答2: cvae-gan-zoos-pytorch-beginner是一些机器学习领域的技术工具,使用深度学习方法来实现动物园场景的生成。这些技术包括:生成式对抗网络(GAN)、变分自编码器(CVAE)和pytorch。GAN是一种基于对抗机制的深度学习网络,它可以训练出生成逼真的场景图像;CVAE也是一种深度学习网络,它可以从潜在空间中提取出高质量的场景特征,并生成原图像相似的图像;pytorch是一个深度学习框架,它可以支持这些技术的开发和实现。 在这个动物园场景生成的过程中,通过GAN和CVAE的组合使用可以从多个角度来创建逼真而多样化的动物园场景。此外,pytorch提供了很多工具和函数来简化代码编写和管理数据,使得训练过程更加容易和高效。对于初学者们来说,这些技术和框架提供了一个良好的起点,可以探索深度学习和图像处理领域的基础理论和实践方法,有助于了解如何使用技术来生成更好的图像结果。 ### 回答3: CVaE-GAN-ZOOS-PyTorch-Beginner是一种结合了条件变分自编码器(CVaE)、生成对抗网络GAN)和零样本学习(Zero-Shot Learning)的深度学习框架。它使用PyTorch深度学习库,适合初学者学习和使用。 CVaE-GAN-ZOOS-PyTorch-Beginner的主要目的是提供一个通用的模型结构,以实现Zero-Shot Learning任务。在这种任务中,模型要从未见过的类别中推断标签。CVaE-GAN-ZOOS-PyTorch-Beginner框架旨在使模型能够从已知类别中学习无监督的表示,并从中推断未知类别的标签。 CVaE-GAN-ZOOS-PyTorch-Beginner的结构由两个关键部分组成:生成器和判别器。生成器使用条件变分自编码器生成潜在特征,并进一步生成样本。判别器使用生成的样本和真实样本区分它们是否相似。这样,生成器被迫学习产生真实的样本,而判别器则被迫学习区分真实的样本和虚假的样本。 总的来说,CVaE-GAN-ZOOS-PyTorch-Beginner框架是一个强大的工具,可以用于解决Zero-Shot Learning问题。它是一个易于使用的框架,适合初学者学习和使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值