OSTU法图像二值化
[算法说明]
Ostu法又叫做最大类间方差法,是一种常用的图像分割算法。基本算法思想是根据初始阈值把图像分为两类,然后计算两类之间的方差,更新阈值,重新计算类间方差,当满足类间方差最大时的阈值,即为所求最佳阈值,具体过程如下:
1,初始化一阈值Th,将图像f(x,y)分为A,B两类;
2,分别计算A,B两类像素集合的均值ua和ub,公式如下:
其中,Na和Nb分别表示集合A,B中的像素个数。
3,计算A,B两类的类间方差,公式如下:
4,将Th从0到255循环,分别计算A,B的类间方差,当类间方差最大时,对应的Th即为所求的最佳分割或二值化的阈值。
[函数代码]
/// <summary>
/// Ostu method of image segmention.
/// </summary>
/// <param name="src">The source image.</param>
/// <returns></returns>
public static WriteableBitmap OstuThSegment(WriteableBitmap src) Ostu法阈值分割
{
if (src != null)
{
int w = src.PixelWidth;
int h = src.PixelHeight;
WriteableBitmap dstImage = new WriteableBitmap(w, h);
byte[] temp = src.PixelBuffer.ToArray();
byte[] tempMask = (byte[])temp.Clone();
//定义灰度图像信息存储变量
int[] srcData = new int[w * h];
//定义阈值变量
int Th = 0; ;
//定义背景和目标像素数目变量N1,N2,灰度变量U1,U2,灰度和变量Sum1,Sum2,临时缓存变量Temp
int N1 = 0, N2 = 0, Sum1 = 0, Sum2 = 0;
//定义背景和目标像素比例变量W1,W2,图像整体平均灰度变量U,方差变量g,对比阈值变量TT
double W1 = 0, W2 = 0, U1 = 0, U2 = 0, g = 0, TT = 0;
for (int j = 0; j < h; j++)
{
for (int i = 0; i < w; i++)
{
srcData[i + j * w] = (int)((double)tempMask[i * 4 + j * w * 4] * 0.114 + (double)tempMask[i * 4 + 1 + j * w * 4] * 0.587 + (double)tempMask[i * 4 + 2 + j * w * 4] * 0.299);
}
}
//寻找最大类间方差
for (int T = 0; T <= 255; T++)
{
for (int i = 0; i < srcData.Length; i++)
{
if (srcData[i] > T)
{
N2++;
Sum2 += srcData[i];
}
else
{
N1++;
Sum1 += srcData[i];
}
}
W1 = (double)(N1 / (N1 + N2));
W2 = (double)(1.0 - W1);
U1 = (N1 == 0 ? 0.0 : (Sum1 / N1));
U2 = (N2 == 0 ? 0.0 : (Sum2 / N2));
g = N1 * N2 * (U1 - U2) * (U1 - U2);
if (g > TT)
{
TT = g;
Th = T;
}
N1 = 0; N2 = 0;
Sum1 = 0; Sum2 = 0; W1 = 0.0; W2 = 0.0; U1 = 0.0; U2 = 0.0; g = 0.0;
}
for (int j = 0; j < h; j++)
{
for (int i = 0; i < w; i++)
{
temp[i * 4 + j * w * 4] = temp[i * 4 + 1 + j * w * 4] = temp[i * 4 + 2 + j * w * 4] = (byte)(srcData[i + j * w] < Th ? 0 : 255);
}
}
Stream sTemp = dstImage.PixelBuffer.AsStream();
sTemp.Seek(0, SeekOrigin.Begin);
sTemp.Write(temp, 0, w * 4 * h);
return dstImage;
}
else
{
return null;
}
}
[图像效果]
Fig.1原图 Fig.2效果图
迭代法图像二值化
[算法说明]
迭代法图像二值化的算法思想是:首先,初始化一个阈值Th,然后按照某种策略通过迭代不断更新这一阈值,直到满足给定的约束条件为止,步骤如下:
1,对于一幅图像,假设当前像素为f(x,y),设定一阈值Th,跟据当前阈值,循环f(x,y),将图像分为两类像素的集合A,B;
2,分别计算A,B集合的像素均值ua和ub,公式如下: