图像基本变换---二值图像距离变换(欧氏距离+棋盘距离+城市街区距离)

本文介绍了二值图像的距离变换原理,包括欧氏距离、棋盘距离和城市街区距离。详细阐述了算法过程,从内部点、孤立点的识别到倒角模版法的应用,特别是Chamfer倒角距离变换法,以及3*3和5*5模板的使用。并提供了一个距离变换的C#代码实现。
摘要由CSDN通过智能技术生成

二值图像距离变换函数

[算法说明]

  二值图像的距离变换实际上就是将二值图像转换为灰度图像,在二值图像中我们将图像分为目标图像和背景图像,假设目标图像像素值为1,即为白色,背景像素为0即为黑色。在转换后的幅灰度图像中,每个连通域的各个像素点的灰度级与该像素点到其背景像素的最近距离有关。其中灰度级最大点的集合为目标图像的骨架,就是目标图像中心部分的像素的集合,灰度级反应了背景像素与目标图像边界的影响关系。用数学语言表示如下:

  假设二值图像I包含一个连通域S,其中有目标O和背景B,距离图为D,则距离变换定义如下:

其中disf()为距离函数,如果用欧拉距离公式表示,如下:

其中p,q分别为目标和背景图像像素点。

  距离变换的具体步骤为:

  1,将图像中的目标像素点分类,分为内部点,外部点和孤立点。

以中心像素的四邻域为例,如果中心像素为目标像素(值为1)且四邻域都为目标像素(值为1),则该点为内部点。如果该中心像素为目标像素,四邻域为背景像素(值为0),则该中心点为孤立点,如下图所示。除了内部点和孤立点之外的目标区域点为边界点。

内部点                     孤立点

Fig.1内部点与孤立点图示

  2,计算图像中所有的内部点和非内部点,点的集合分别记为S1S2

  3,对于S1中的每一个内部点(x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值