1_文本处理与词嵌入

一、前提

The IMDB Movie Review Dataset

  • 50K movie reviews (text).
  • Each review is labeled with either "positive"or “negative”.
  • It is a binary classification problem.(二分类问题)
  • 25K for training and 25K for test.

http://ai.stanford.edu/~amaas/data/sentiment/

http://s3.amazonaws.com/text-datasets/acllmdb.zip

二、Text to Sequence(文本处理)

文本处理的好坏直接影响机器学习的准确率

2.1 Tokenization(分词)

  • 把文本分隔为单词。
  • 一个token(符号)就是一个单词或者字符。

image-20210329205244928

2.2 Build Dictionary(建立一个字典)

可以首先统计词频,去掉低频词,然后让每一个单词对应每一个正整数,有了字典,就可以把每一个单词映射为每一个整数,这样一句话就可以用正整数的列表表示。而这个列表被称为sequences(序列)

2.3 One-Hot Encoding

如果有必要,可以进一步做one-hot encoding,把单词变为one-hot向量。

2.4 Align Sequences(对齐序列)

训练数据没有对齐,每个序列都有不同的长度,在做机器学习的时候,我们把数据存储在矩阵或者张量中,这就需要把序列对齐,每条序列都有相同的长度。

解决方法如下:

image-20210329211052622

三、Word Embedding: Word to Vector(词嵌入:把单词表示成低维向量)

文本处理已经完成,每一个词都用一个正整数来表示。

3.1 One-Hot Encoding(one-hot 编码)

用one-hot向量来表示一个单词。

image-20210329212412074

3.2 Word Embedding(词嵌入)

Embedding往往表示有降维的意思。

  • d表示词向量的维度,由用户自己决定;
  • v是字典里单词的数量;
  • 矩阵的乘法结果计作向量Xi,其是一个词向量,维度为d;
  • P转置矩阵的每一列都是一个词向量。
  • 参数矩阵p是从训练数据中学习到的,所以学习到的词向量会带有感情色彩。

image-20210329213933347

image-20210329214726691

四、Logistic Regression for Binary Classification(用逻辑回归做二分类)

判断电影评论是正面还是负面的。

image-20210329220402668

image-20210329220815283

image-20210329220914714

4.1 Performance on the training and validation sets(训练和验证集的表现)

image-20210329221229107

4.2 Performance on test set(测试集表现)

image-20210329221351871

4.3 Logistic Regression for Sentiment Analysis

image-20210329221627721

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少云清

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值