十四、处理文本数据2使用词嵌入

本文介绍了词嵌入的概念,如何通过Embedding层在机器学习任务中学习或使用预计算的词嵌入,以及在IMDB电影评论情感预测中的应用,包括使用GloVe预训练词嵌入提升模型表现。
摘要由CSDN通过智能技术生成

使用词嵌入

将单词与向量相关联还有另一种常用的强大方法,就是使用密集的词向量(word vector),也叫词嵌入(word embedding)。one-hot 编码得到的向量是二进制的、稀疏的(绝大部分元素都是 0)、维度很高的(维度大小等于词表中的单词个数),而词嵌入是低维的浮点数向量(即密集向量,与稀疏向量相对)
在这里插入图片描述
获取词嵌入有两种方法

  • 在完成主任务(比如文档分类或情感预测)的同时学习词嵌入。在这种情况下,一开始是随机的词向量,然后对这些词向量进行学习,其学习方式与学习神经网络的权重相同。
  • 在不同于待解决问题的机器学习任务上预计算好词嵌入,然后将其加载到模型中。这些词嵌入叫作预训练词嵌入(pretrained word embedding)。
利用 Embedding 层学习词嵌入

要将一个词与一个密集向量相关联,最简单的方法就是随机选择向量。这种方法的问题在于,得到的嵌入空间没有任何结构。

词向量之间的几何关系应该表示这些词之间的语义关系。词嵌入的作用应该是将人类的语言映射到几何空间中。例如,在一个合理的嵌入空间中,同义词应该被嵌入到相似的词向量中,一般来说,任意两个词向量之间的几何距离(比如 L2 距离)应该和这两个词的语义距离有关(表示不同事物的词被嵌入到相隔很远的点,而相关的词则更加靠近)。除了距离,你可能还希望嵌入空间中的特定方向也是有意义的。为了更清楚地说明这一点,我们来看一个具体示例。

四个词被嵌入在二维平面上,这四个词分别是 cat(猫)、dog(狗)、wolf(狼)和 tiger(虎)。对于我们这里选择的向量表示,这些词之间的某些语义关系可以被编码为几何变换。例如,从 cat 到 tiger 的向量与从 dog 到 wolf 的向量相等,这个向量可以被解释为“从宠物到野生动物”向量。同样,从 dog 到 cat 的向量与从 wolf 到 tiger 的向量也相等,它可以被解释为“从犬科到猫科”向量。
在这里插入图片描述
在真实的词嵌入空间中,常见的有意义的几何变换的例子包括“性别”向量和“复数”向量。例如,将 king(国王)向量加上 female(女性)向量,得到的是 queen(女王)向量。将 king(国王)向量加上 plural(复数)向量,得到的是 kings 向量。词嵌入空间通常具有几千个这种可解释的、并且可能很有用的向量。

有没有一个理想的词嵌入空间,可以完美地映射人类语言,并可用于所有自然语言处理任务?可能有,但我们尚未发现。此外,也不存在人类语言(human language)这种东西。

将一个 Embedding 层实例化
from keras.layers import Embedding
# Embedding 层至少需要两个参数:标记的个数(这里是 1000,即最大单词索引 +1)和嵌入的维度(这里是 64)
embedding_layer = Embedding(1000, 64)

最好将 Embedding 层理解为一个字典,将整数索引(表示特定单词)映射为密集向量。它接收整数作为输入,并在内部字典中查找这些整数,然后返回相关联的向量。Embedding 层实际上是一种字典查找。
在这里插入图片描述
Embedding 层的输入是一个二维整数张量,其形状为 (samples, sequence_length),每个元素是一个整数序列。
Embedding 层,你可以输入形状为 (32, 10)(32 个长度为 10 的序列组成的批量)

Embedding 层返回一个形状为 (samples, sequence_length, embedding_dimensionality) 的三维浮点数张量。
将一个 Embedding 层实例化时,它的权重(即标记向量的内部字典)最开始是随机的,与其他层一样。在训练过程中,利用反向传播来逐渐调节这些词向量,改变空间结构以便下游模型可以利用。一旦训练完成,嵌入空间将会展示大量结构,这种结构专门针对训练模型所要解
决的问题。

Embedding 实例
>>> model = tf.keras.Sequential()
>>> model.add(tf.keras.layers.Embedding(1000, 64, input_length=10))
>>> # The model will take as input an integer matrix of size (batch,
>>> # input_length), and the largest integer (i.e. word index) in the input
>>> # should be no larger than 999 (vocabulary size).
>>> # Now model.output_shape is (None, 10, 64), where `None` is the batch
>>> # dimension.
>>> input_array = np.random.randint(1000, size=(32, 10))
>>> model.compile('rmsprop', 'mse')
>>> output_array = model.predict(input_array)
>>> print(output_array.shape)
(32, 10, 64)
IMDB 电影评论情感预测任务
加载 IMDB 数据,准备用于 Embedding 层
from keras.datasets import imdb
from keras import preprocessing

# 作为特征的单词个数
max_features = 10000
# 在这么多单词后截断文本(这些单词都属于前 max_features 个最常见的单词)
maxlen = 20

# 将数据加载为整数列表.
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)

# 将整数列表转换成形状为(samples, maxlen) 的二维整数张量
x_train = preprocessing.sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = preprocessing.sequence.pad_sequences(x_test, maxlen=maxlen)
IMDB 数据上使用 Embedding 层和分类器
from keras.models import Sequential 
from keras.layers import Flatten, Dense, Embedding
model = Sequential()
#指定 Embedding 层的最大输入长度,以便后面将嵌入输入展平。Embedding 层激活的形状为 (samples, maxlen, 8)
model.add(Embedding(10000, 8, input_length=maxlen)) 
# 将三维的嵌入张量展平成形状为 (samples, maxlen * 8) 的二维张量
model.add(Flatten()) 
# 在上面添加分类器
model.add(Dense(1, activation='sigmoid')) 
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) 
model.summary()
history = model.fit(x_train, y_train, 
 epochs=10,
 batch_size=32, 
 validation_split=0.2)

得到的验证精度约为 76%,考虑到仅查看每条评论的前 20 个单词,这个结果还是相当不错
的。

但请注意,仅仅将嵌入序列展开并在上面训练一个 Dense 层,会导致模型对输入序列中的每个单词单独处理,而没有考虑单词之间的关系和句子结构。更好的做法是在嵌入序列上添加循环层或一维卷积层,将每个序列作为整体来学习特征。

使用预训练的词嵌入

有时可用的训练数据很少,以至于只用手头数据无法学习适合特定任务的词嵌入。那么应该怎么办?
你可以从预计算的嵌入空间中加载嵌入向量,而不是在解决问题的同时学习词嵌入。
有许多预计算的词嵌入数据库,你都可以下载并在 Keras 的 Embedding 层中使用。word2vec 就是其中之一。另一个常用的是 GloVe。

使用 GloVe实例

我们将从头开始,先下载IMDB 原始文本数据,而不是使用 Keras 内置的已经预先分词的 IMDB 数据。
1. 下载 IMDB 数据的原始文本

首先,打开 http://mng.bz/0tIo,下载原始 IMDB 数据集并解压。

处理 IMDB 原始数据的标签

import os
imdb_dir = '/Users/fchollet/Downloads/aclImdb'
train_dir = os.path.join(imdb_dir, 'train')
labels = []
texts = []
for label_type in ['neg', 'pos']:
 dir_name = os.path.join(train_dir, label_type)
 for fname in os.listdir(dir_name):
 if fname[-4:] == '.txt':
 f = open(os.path.join(dir_name, fname))
 texts.append(f.read())
 f.close()
 if label_type == 'neg':
 labels.append(0)
 else:
 labels.append(1)

2. 对数据进行分词
IMDB 原始数据的文本进行分词

 from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
import numpy as np
maxlen = 100 
training_samples = 200 
validation_samples = 10000 
max_words = 10000 
tokenizer = Tokenizer(num_words=max_words)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))
data = pad_sequences(sequences, maxlen=maxlen)
labels = np.asarray(labels)
print('Shape of data tensor:', data.shape)
print('Shape of label tensor:', labels.shape)
indices = np.arange(data.shape[0]) 
np.random.shuffle(indices)
data = data[indices]
labels = labels[indices]
x_train = data[:training_samples]
y_train = labels[:training_samples]
x_val = data[training_samples: training_samples + validation_samples] 
y_val = labels[training_samples: training_samples + validation_samples]
  1. 下载 GloVe 词嵌入
    打开 https://nlp.stanford.edu/projects/glove,下载 2014 年英文维基百科的预计算嵌入。这是一个 822 MB 的压缩文件,文件名是 glove.6B.zip,里面包含 400 000 个单词(或非单词的标记)的 100 维嵌入向量。解压文件。
  2. 对嵌入进行预处理
    解析 GloVe 词嵌入文件
glove_dir = '/Users/fchollet/Downloads/glove.6B'
embeddings_index = {}
f = open(os.path.join(glove_dir, 'glove.6B.100d.txt'))
for line in f:
 values = line.split()
 word = values[0]
 coefs = np.asarray(values[1:], dtype='float32')
 embeddings_index[word] = coefs
f.close()
print('Found %s word vectors.' % len(embeddings_index))

准备 GloVe 词嵌入矩阵

embedding_dim = 100
embedding_matrix = np.zeros((max_words, embedding_dim))
for word, i in word_index.items():
 if i < max_words:
 	embedding_vector = embeddings_index.get(word)
 if embedding_vector is not None:
 	embedding_matrix[i] = embedding_vector
  1. 定义模型
from keras.models import Sequential
from keras.layers import Embedding, Flatten, Dense
model = Sequential()
model.add(Embedding(max_words, embedding_dim, input_length=maxlen))
model.add(Flatten())
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()
  1. 在模型中加载 GloVe 嵌入
model.layers[0].set_weights([embedding_matrix])
model.layers[0].trainable = False

需要冻结 Embedding 层(即将其 trainable 属性设为 False),其原理和预训练的卷积神经网络特征相同
7. 训练模型与评估模型

model.compile(optimizer='rmsprop',
 loss='binary_crossentropy',
 metrics=['acc'])
history = model.fit(x_train, y_train,
 epochs=10,
 batch_size=32,
 validation_data=(x_val, y_val))
model.save_weights('pre_trained_glove_model.h5')

在这里插入图片描述
模型很快就开始过拟合,考虑到训练样本很少,这一点也不奇怪。出于同样的原因,验证精度的波动很大,但似乎达到了接近 60%。
你的结果可能会有所不同。训练样本数太少,所以模型性能严重依赖于你选择的200 个样本,而样本是随机选择的。如果你得到的结果很差,可以尝试重新选择 200 个不同的随机样本,你可以将其作为练习。

  • 10
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值