题意:给定一个面积,在一个单位长度为1的网格中,可以画边和对角线,求画出不小于这个面积的封闭图形说要用的最小的边数
分析:如果边数是偶数,那一定是构成一个完整的矩形面积最大,且每一条边都是sqrt(2),设矩形的两条边为a,b,则面积为2ab,可见ab的差距越小越好,如果是奇数,可以由偶数条边时加一条边获得,通过画图找到规律:选择矩形的较长的那一条边将这条边变成一个梯形的形式,如果边长为X,那么可以增加的面积为X - 1 + 0.5,这样也就是对于给定的边数求出能表示的最大的面积,这样就可以二分边数来看能否满足给定的面积,这样二分就可以解决问题。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <cmath>
#include <algorithm>
#include <string>
#include <cstring>
#include <map>
using namespace std;
typedef long long ll;
ll n;
bool solve(ll x)
{
ll l = x & 1 ? x - 1 : x;
l /= 2;
ll a = l / 2;
ll b = l - a;
ll s = 2 * a * b;
if(s >= n) return true;
if(x & 1) s = s + max(a, b) - 1;
if(s >= n) return true;
return false;
}
int main()
{
int CASE;
scanf("%d", &CASE);
while(CASE--)
{
scanf("%lld", &n);
ll l = 0LL, r = 10000000LL;
ll ans = 0LL;
while(l <= r)
{
ll mid = l + (r - l) / 2;
if(solve(mid)) ans = mid, r = mid - 1;
else l = mid + 1;
}
printf("%lld\n", ans);
}
return 0;
}