【HDU6154】CaoHaha's staff (二分+规律)

题意:给定一个面积,在一个单位长度为1的网格中,可以画边和对角线,求画出不小于这个面积的封闭图形说要用的最小的边数


分析:如果边数是偶数,那一定是构成一个完整的矩形面积最大,且每一条边都是sqrt(2),设矩形的两条边为a,b,则面积为2ab,可见ab的差距越小越好,如果是奇数,可以由偶数条边时加一条边获得,通过画图找到规律:选择矩形的较长的那一条边将这条边变成一个梯形的形式,如果边长为X,那么可以增加的面积为X - 1 + 0.5,这样也就是对于给定的边数求出能表示的最大的面积,这样就可以二分边数来看能否满足给定的面积,这样二分就可以解决问题。


AC代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <cmath>
#include <algorithm>
#include <string>
#include <cstring>
#include <map>

using namespace std;

typedef long long ll;
ll n;
bool solve(ll x)
{
    ll l = x & 1 ? x - 1 : x;
    l /= 2;
    ll a = l / 2;
    ll b = l - a;
    ll s = 2 * a * b;
    if(s >= n) return true;
    if(x & 1) s = s + max(a, b) - 1;
    if(s >= n) return true;
    return false;
}

int main()
{
    int CASE;
    scanf("%d", &CASE);
    while(CASE--)
    {
        scanf("%lld", &n);
        ll l = 0LL, r = 10000000LL;
        ll ans = 0LL;
        while(l <= r)
        {
            ll mid = l + (r - l) / 2;
            if(solve(mid)) ans = mid, r = mid - 1;
            else l = mid + 1;
        }
        printf("%lld\n", ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值