深度学习框架中的Ranking Loss

深度学习框架中的Ranking Loss

Caffe
Constrastive Loss Layer. 限于 Pairwise Ranking Loss 计算. 例如,可以用于训练 Siamese 网络。
PyCaffe Triplet Ranking Loss Layer. 用来训练 triplet 网络,by David Lu。

PyTorch
CosineEmbeddingLoss. 使用余弦相似度的 Pairwise Loss。输入是一对二元组,标签标记它是一个正样本对还是负样本对,以及边距 margin。
MarginRankingLoss. 同上, 但使用欧拉距离。
TripletMarginLoss. 使用欧拉距离的 Triplet Loss。

TensorFlow
contrastive_loss. Pairwise Ranking Loss.
triplet_semihard_loss. 使用 semi-hard 负采样的 Triplet loss。

Ranking loss(排序损失)是一种用于训练排序模型的损失函数。在信息检索、推荐系统等应用,常常需要将一组项目(例如文档、商品等)进行排序,以便将最相关或最合适的项目排在前面。Ranking loss的目标是通过比较和排序不同项目的相关性来训练模型。 一种常见的Ranking loss是pairwise ranking loss(成对排序损失),其通过比较每对项目的相关性来定义损失。给定一对项目,我们希望将相关性高的项目排在前面。假设我们有一个训练集,其每个样本包含两个项目和它们的相关性标签(例如,0表示不相关,1表示相关)。对于这个训练集的每个样本,我们可以计算两个项目的相关性分数,并使用损失函数来优化模型。 一种常用的pairwise ranking loss是pairwise hinge loss(成对合页损失)。对于一对项目(正负样本),如果模型对正样本的预测分数低于负样本的预测分数加上一个预定义的边界值(例如1),则会产生损失。这样的损失函数鼓励模型将相关性高的项目得分提高,不相关性高的项目得分降低。 除了pairwise ranking loss,还有其他类型的Ranking loss,如pointwise ranking loss和listwise ranking loss。pointwise ranking loss独立地处理每个项目,将排序问题转化为回归问题,而listwise ranking loss则考虑整个项目列表的排序。 总结来说,Ranking loss是一种用于排序模型训练的损失函数,通过比较和排序不同项目的相关性来优化模型。其pairwise ranking loss是常见的一种形式,它通过比较每对项目的相关性来定义损失。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值