算法导论——矩阵链乘法(显示完全括号方案)

上一个问题:切割钢条

《算法导论》讲解动态规划的第二个问题是矩阵链乘法。
先介绍已经矩阵的相乘:

  • 矩阵A:p*q
  • 矩阵B:q*r

则两个矩阵相乘所需的乘法次数为pqr;
在多个矩阵A1A2A3A4…An相乘时,由于矩阵乘法满足结合律。所以恰当的运用结合律,可以大大的缩小运算时间。
如,有三个矩阵

  • A1:10*100
  • A2:100*5
  • A3:5*50

先算A1A2:10* 100* 5+10 * 5 * 50=7500
先算A2A3:100* 5* 50+10* 100* 50=75000
在矩阵链长度只有3的时候,不同的结合律已经显示出了10倍的差距,可见选择合适的结合律有多么重要。
现在,用动态规划的方法找出最好的结合律的方案(完全括号法)

现在按照上一篇文章所描述的动态规划方法步骤,来实现这个算法!

1.刻画一个最优解的特征
2.递归的定义最优值
3.计算最优值,通常采用自底向上的方法

1.刻画最优解的结构特征

先寻找到一个最优子结构,当前问题可以由这个最优子结构来表示出来。具体一点,对于一个矩阵链Ai~ Aj找到一个k(i<k<j)——即把i ~ j分为两个部分。使得(A i ~ A k)乘(A k+1 ~ A j)的结果是最小的。对于(A i ~ A k)和(A k+1 ~ A j)又可以把他们继续拆分。
此时矩阵链Ai~ Aj相乘的代价可以表示为
m[i,j]=m[i,k]+m[k+1,j]+pi-1pkpj
数组p应矩阵i ~ j的行数,列数;

一个递归的求解方案

经过上述的分析,要找的m[i,j]的最小值,就要遍历i ~ j之间所有的k,m[i,j]可以表示为

  1. 0 ---------------------------------- i=j
  2. m[i,k]+m[k+1,j]+pi-1pkpj ----- i<j

在对k遍历的过程中,可以将满足条件的k储存在数组s[i] [j]中 。s[i][j]=k,代表在矩阵链i ~ j ,在k处画括号,可以使相乘次数最小。这里由于是自底向上实现的,所以默认m[i][k]和m[k+1][j]是已知的,直接用他们的值来作比较就好了。

代码实现

动态规划核心代码

for (i = 1; i <= n; i++)
		m[i][i] = 0;             //自己乘自己代价为零
	//规划
for (L = 2; L <= n; L++) //从长度为2的开始遍历,即i~j的长度为2
{
	for (i = 1; i <= n - L + 1; i++)
	{
		j = i + L - 1;
		m[i][j] = 100000000;
		for (k = i; k < j; k++)
		{
			int q = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];
			if (q < m[i][j])  //不断更新m[i][j]的值,保证他是最小的
			{
				m[i][j] = q;
				s[i][j] = k;
			}
		}
	}
}

显示i ~ j 之间在哪一个点做截断合适

	for (i = 1; i <= n; i++)
	{
		for (j = i; j <= n; j++)
		{
			printf("%d   %d:  %d\n", i, j, s[i][j]);
		}
	}

完整代码:

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<string.h>
int p[7] = {30,35,15,5,10,20,25};
//int p[4] = { 10,100,5,50 };
int m[1000][1000] = { 0 };
int s[1000][1000] = { 0 };
struct node {
	int a;
	int b;
};
struct node num[1000];
void pr(int, int);
void add(int, int, int);
int main()
{
	int n = sizeof(p)/sizeof(int)-1, L, i, j, k;
	for (i = 1; i <= n; i++)
		m[i][i] = 0;             //自己乘自己代价为零
	//规划
	for (L = 2; L <= n; L++)
	{
		for (i = 1; i <= n - L + 1; i++)
		{
			j = i + L - 1;
			m[i][j] = 100000000;
			for (k = i; k < j; k++)
			{
				int q = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];
				if (q < m[i][j])
				{
					m[i][j] = q;
					s[i][j] = k;

				}
			}
		}
	}
	add(1, n, s[1][n]);
	printf("%d\n", m[1][n]);
	pr(1, n);
	puts("");
	for (i = 1; i <= n; i++)
	{
		for (j = i; j <= n; j++)
		{
			printf("%d   %d:  %d\n", i, j, s[i][j]);
		}
	}
	for (i = 1; i <= n; i++)
	{
		while (num[i].a != 0)
		{
			num[i].a--;
			printf("(");
		}
		printf("A%d", i);
		while (num[i].b != 0)
		{
			num[i].b--;
			printf(")");
		}
	}
}
void add(int i, int j, int k)
{
	if (j - i <= 0)
		return;
	//在知道了,i,j,k;判断他们三者的距离来决定要不要加括号
	if (k - i > 0)
	{
		num[i].a++;
		num[k].b++;
	}
	if (j - k > 1)
	{
		num[k + 1].a++;
		num[j].b++;
	}
	add(i, k, s[i][k]);
	add(k + 1, j, s[k + 1][j]);
}
void pr(int i, int j)
{
	if (j-i <= 0)
		return;
	else {
		int k = s[i][j];
		printf("%d  ", s[i][j]);
		pr(i, k);
		pr(k + 1, j);
	}
}

开头给了两个测试数据,可以自己尝试更多的测试数据
在这里插入图片描述
输出结果
在这里插入图片描述

在这里插入图片描述
最后介绍一下如何输出完全括号的方案。在算出最终结构之后,调用递归函数
对于相差两个矩阵或以上的添加括号,对于单个矩阵不添加。如(A1A2)A3

void add(int i, int j, int k)
{
	if (j - i <= 0)
		return;
	//在知道了,i,j,k;判断他们三者的距离来决定要不要加括号
	if (k - i > 0)
	{ 
		num[i].a++; //在结构体中a表示i的左边要添加'('
		num[k].b++;//b表示i的右边要添加括号')'
	}
	if (j - k > 1)
	{
		num[k + 1].a++;
		num[j].b++;
	}
	add(i, k, s[i][k]);
	add(k + 1, j, s[k + 1][j]);
}

最后配合输出,打印出完整的方案

	for (i = 1; i <= n; i++)
	{
		while (num[i].a != 0)
		{
			num[i].a--;
			printf("(");
		}
		printf("A%d", i);
		while (num[i].b != 0)
		{
			num[i].b--;
			printf(")");
		}
	}

总结

和切割钢条类似,不须要在一个大问题中考虑很多个子问题,具体在这两个问题中,值需要考虑将一个大问题分为两个子问题,至于更细的划分,他的两个子问题里面已经考虑好了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值