Unet训练
2015年,以FCN为基础改进得到了Unet网络。Unet结构简单,采用了编码-解码结构,编码器实现特征的提取,解码器进行上采样,并融合了不同尺度特征,实现精细分割。
Unet代码 免费下载链接
序言
通常,Unet被普遍应用到医学图像的处理,实现病灶的分割,这里的分割一般只是针对于单类病灶和背景的分割。为此,博主使用pytorch,对含有21类的VOC2012数据集在Unet实现训练和测试,过程如下。
开发环境
- ubuntu 18.04
- cuda 10.0 cudnn 7.5
- pytorch1.2
- python3.7
一、准备自己的数据集
1. 数据集做标签
使用labelme对原始图像进行标注,得到对应的json文件。
2. json文件转换为mask和png图片格式
首先,新建文件夹;然后,在新建文件夹下,将自己的数据(原始图片和对应的json文件)放入同一个 data_annotated 文件夹;之后,制作自己的 labels.txt,拷贝 labelme2voc.py 文件不需改动;准备情况如下:
labelme2voc.py 文件目录 /labelme/examples/semantic_segmentation 下载链接,因为只用到该文件,大家可以不用去githup下载,这里直接给出 labelme2voc.py :
// labelme2voc.py
#!/usr/bin/env python
from __future__ import print_function
import argparse
import glob
import json
import os
import os.path as osp
import sys
import imgviz
import numpy as np
import PIL.Image
import labelme
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('input_dir', help='input annotated directory')
parser.add_argument('output_dir', help='output dataset directory')
parser.add_argument('--labels', help='labels file', required=True)
parser.add_argument(
'--noviz', help='no visualization', action='store_true'
)
args = parser.parse_args()
if osp.exists(args.output_dir):
print('Output directory already exists:', args.output_dir)
sys.exit(1)
os.makedirs(args.output_dir)
os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClass'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClassPNG'))
if not args.noviz:
os.makedirs(
osp.join(args.output_dir, 'SegmentationClassVisualization')
)
print('Creating dataset:', args.output_dir)
class_names = []
class_name_to_id = {}
for i, line in enumerate(open(args.labels).readlines()):
class_id = i - 1 # starts with -1
class_name = line.strip()
class_name_to_id[class_name] = class_id
if class_id == -1:
assert class_name == '__ignore__'
continue
elif class_id == 0:
assert class_name == '_background_'
class_names.append(class_name)
class_names = tuple(class_names)
print('class_names:', class_names)
out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
with open(out_class_names_file, 'w') as f:
f.writelines('\n'.join(class_names))
print('Saved class_names:', out_class_names_file)
for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
print('Generating dataset from:', label_file)
with open(label_file) as f:
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
args.output_dir, 'JPEGImages', base + '.jpg')
out_lbl_file = osp.join(
args.output_dir, 'SegmentationClass', base + '.npy')
out_png_file = osp.join(
args.output_dir, 'SegmentationClassPNG', base + '.png')
if not args.noviz:
out_viz_file = osp.join(
args.output_dir,
'SegmentationClassVisualization',
base + '.jpg',
)
data = json.load(f)
img_file = osp.join(osp.dirname(label_file), data['imagePath'])
img = np.asarray(PIL.Image.open(img_file))
PIL.Image.fromarray(img).save(out_img_file)
lbl = labelme.utils.shapes_to_label(
img_shape=img.shape,
shapes=data['shapes'],
label_name_to_value=class_name_to_id,
)
labelme.utils.lblsave(out_png_file, lbl)
np.save(out_lbl_file, lbl)
if not args.noviz:
viz = imgviz.label2rgb(
label=lbl,
img=imgviz.rgb2gray(img),
font_size=15,
label_names=class_names,
loc='rb',
)
imgviz.io.imsave(out_viz_file, viz)
if __name__ == '__main__':
main()
最后,在新建文件夹下打开终端,激活labelme虚拟环境,运行:
python labelme2voc.py data_annotated data_dataset_voc --labels labels.txt
生成 data_dataset_voc 文件夹,里面包含:
JPEGImages存放原图
SegmentationClass存放ground truth(mask)的二进制文件
SegmentationClassPNG存放原图对应的ground truth(mask)
SegmentationClassVisualization存放原图与ground truth融合后的图
3.创建数据集
ImageSets文件夹内还有一个文件夹Segmentation,存放train.txt、trainval.txt和val.txt
JPEGImages存放原图
SegmentationClass存放原图对应的ground truth(mask),即上面提到的SegmentationClassPNG
二、修改训练文件
1. mypath.py中路径的修改
// mypath.py
class Path(object):
@staticmethod
def db_root_dir(dataset):
if dataset == 'pascal':
return '/home/user/VOC2012/' # 改为自己的路径,这里的voc2012文件夹包含了ImageSets、JPEGImages和SegmentationClass这3个文件夹
elif dataset == 'cityscapes':
return '/path/to/datasets/cityscapes/'
elif dataset == 'coco':
return '/path/to/datasets/coco/'
else:
print('Dataset {} not available.'.format(dataset))
raise NotImplementedError
2. dataloaders/datasets/pascal.py修改
// pascal.py
from __future__ import print_function, division
import os
from PIL import Image
import numpy as np
from torch.utils.data import Dataset
from mypath import Path
from torchvision import transforms
from dataloaders import custom_transforms as tr
class VOCSegmentation(Dataset):
"""
PascalVoc dataset
"""
NUM_CLASSES = 21 # 修改为自己的类别数
def __init__(self,
args,
base_dir=Path.db_root_dir('pascal'),
split='train',
):
"""
3. dataloaders/utils.py修改
// utils.py
if dataset == 'pascal' or dataset == 'coco':
n_classes = 21 # 修改为自己的类别数
label_colours = get_pascal_labels()
elif dataset == 'cityscapes':
n_classes = 19
label_colours = get_cityscapes_labels()
else:
raise NotImplementedError
// utils.py
def get_pascal_labels():
"""Load the mapping that associates pascal classes with label colors
Returns:
np.ndarray with dimensions (21, 3) # 21改为自己的类别数
"""
return np.asarray([[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],
[0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],
[64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],
[64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],
[0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],
[0, 64, 128]]) # 根据自己的类别,自定义颜色
注意:对于自己的数据集,在函数 get_pascal_labels() 定义的各类别颜色,与labelme生成的SegmentationClassPNG中mask的颜色无法对应,需要对labelme虚拟环境中的相关文件做进一步改进,改进内容链接。
4. train.py修改
// train.py
# Define network
model = Unet(n_channels=3, n_classes=21) # n_classes修改为自己的类别数
train_params = [{'params': model.parameters(), 'lr': args.lr}]
保存每个epoch的损失,便于后续绘制损失曲线
// train.py
self.writer.add_scalar('train/total_loss_epoch', train_loss, epoch)
print('[Epoch: %d, numImages: %5d]' % (epoch, i * self.args.batch_size + image.data.shape[0]))
print('Loss: %.3f' % train_loss)
loss_save='/home/user/U-Net/curve/loss.txt' # 保存每个epoch的损失,修改为自己的路径
file_save=open(loss_save,mode='a')
file_save.write('\n'+'epoch:'+str(epoch)+' cross entroy:'+str(train_loss))
file_save.close()
if self.args.no_val:
# save checkpoint every epoch
is_best = False
self.saver.save_checkpoint({
'epoch': epoch + 1,
'state_dict': self.model.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, is_best)
--gpu-ids, default='0',表示指定显卡为默认显卡,若为多显卡可设置为default='0,1,2.......'
设置自己的epoch,batch_size,lr:
// train.py
# default settings for epochs, batch_size and lr
if args.epochs is None:
epoches = {
'coco': 30,
'cityscapes': 200,
'pascal': 400, # epoch=400,训练时改为自己的epoch
}
args.epochs = epoches[args.dataset.lower()]
if args.batch_size is None:
args.batch_size = 2 * len(args.gpu_ids) # 训练过程的batch_size,为2倍的GPU个数
if args.test_batch_size is None:
args.test_batch_size = args.batch_size # 测试过程的batch_size
if args.lr is None:
lrs = {
'coco': 0.1,
'cityscapes': 0.01,
'pascal': 0.05,
}
args.lr = lrs[args.dataset.lower()] / (2 * len(args.gpu_ids)) * args.batch_size # 学习率
直接在pycharm中进行run,正常训练情形:
每个epoch训练完成后都会对验证集进行评估,按照mIoU最优的结果进行模型的保存,最后的模型训练结果会保存在run文件中。
三、修改测试文件
demo.py修改
// demo.py
import argparse
import os
import numpy as np
import time
import cv2
from modeling.unet import *
from dataloaders import custom_transforms as tr
from PIL import Image
from torchvision import transforms
from dataloaders.utils import *
from torchvision.utils import make_grid, save_image
def main():
parser = argparse.ArgumentParser(description="PyTorch Unet Test")
parser.add_argument('--in-path', type=str, required=True, help='image to test')
parser.add_argument('--ckpt', type=str, default='model_best.pth.tar', # 得到的最好的训练模型
help='saved model')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--gpu-ids', type=str, default='0', # 默认单GPU测试
help='use which gpu to train, must be a \
comma-separated list of integers only (default=0)')
parser.add_argument('--dataset', type=str, default='pascal',
choices=['pascal', 'coco', 'cityscapes','invoice'],
help='dataset name (default: pascal)')
parser.add_argument('--crop-size', type=int, default=512,
help='crop image size')
parser.add_argument('--num_classes', type=int, default=21, # 修改为自己的类别数
help='crop image size')
parser.add_argument('--sync-bn', type=bool, default=None,
help='whether to use sync bn (default: auto)')
parser.add_argument('--freeze-bn', type=bool, default=False,
help='whether to freeze bn parameters (default: False)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
try:
args.gpu_ids = [int(s) for s in args.gpu_ids.split(',')]
except ValueError:
raise ValueError('Argument --gpu_ids must be a comma-separated list of integers only')
if args.sync_bn is None:
if args.cuda and len(args.gpu_ids) > 1:
args.sync_bn = True
else:
args.sync_bn = False
model_s_time = time.time()
model = Unet(n_channels=3, n_classes=21)
ckpt = torch.load(args.ckpt, map_location='cpu')
model.load_state_dict(ckpt['state_dict'])
model = model.cuda()
model_u_time = time.time()
model_load_time = model_u_time-model_s_time
print("model load time is {}".format(model_load_time))
composed_transforms = transforms.Compose([
tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
tr.ToTensor()])
for name in os.listdir(args.in_path):
s_time = time.time()
image = Image.open(args.in_path+"/"+name).convert('RGB')
target = Image.open(args.in_path+"/"+name).convert('L')
sample = {'image': image, 'label': target}
tensor_in = composed_transforms(sample)['image'].unsqueeze(0)
model.eval()
if args.cuda:
tensor_in = tensor_in.cuda()
with torch.no_grad():
output = model(tensor_in)
grid_image = make_grid(decode_seg_map_sequence(torch.max(output[:3], 1)[1].detach().cpu().numpy()),
3, normalize=False, range=(0, 9))
save_image(grid_image,'/home/user/U-Net/pred'+"/"+"{}.png".format(name[0:-4])) #测试图片测试后结果保存在pred文件中
u_time = time.time()
img_time = u_time-s_time
print("image:{} time: {} ".format(name,img_time))
print("image save in in_path.")
if __name__ == "__main__":
main()
# python demo.py --in-path your_file --out-path your_dst_file
demo.py修改完成后,在pycharm中的Terminal下运行:
// Terminal
python demo.py --in-path /home/user/U-Net/test
--in-path /home/user/U-Net/test 是你测试图片的路径
测试正确的情形:
最后Unet测试得到预测图:
左图为原图,右图为预测图。
通过训练中保存的loss.txt得到Unet训练过程中的损失曲线:
四、计算测试集各类别mIoU
前面对测试集的测试得到的是24位预测图,无法与对应的8位ground truth作比较,无法求得测试集中对每个类别mIoU的计算,在这里我们根据demo.py做了进一步改进,得到了 demo_mIoU.py 下载链接,运行 demo_mIoU.py 后,得到8位灰度图:
左图为原图,右图为8位预测图。
紧接着,在 mIoU.py 下载链接 中计算关于测试集中预测图与ground truth的各类别mIoU值, mIoU.py 运行结果如下:
在这里,上图中左列为类别名,右列为测试集中该类别的mIoU值,最后一行的mIoU表示测试集的mIoU值。由于只是简单训练了voc2012中的数据,测试集只挑选了50张图,因此,得到的测试集mIoU值较小。
感谢各位读者朋友指正