CAT-Net: Compression Artifact Tracing Network 算法测试

本文介绍了WACV2021论文中的CAT-Net算法,用于图像篡改检测。虽然在CASIA V2数据集上表现惊艳,但在COVERAGE数据集上泛化能力不足。测试中发现,算法对旋转的抗干扰性能有限,超过180度时检测效果下降。权重文件需从谷歌或百度云下载,并注意输出尺寸和分辨率的变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2021年的开源图像篡改检测算法还是很难找的

这篇文章是 WACV2021 paper,作者是韩国人。

WACV据说是仅次于CVPR等的顶会。

https://github.com/mjkwon2021/CAT-Net
这个东西直接在github 上面搜索名字竟然搜不到。
但是会出现readme文档,在这个readme文档中点进去才会出现代码。

算法训练使用的数据集

最好不要使用下面的数据集进行测试
在这里插入图片描述
在这里插入图片描述

对于一个培训集 使用以下数据集
auth.表示未篡改图像;tamp.表示篡改图像

  • CASIAv2(auth./tamp.)
  • Fantastic Reality(auth./tamp.)
  • IMD2020(tamp)
  • splicing COCO(tamp.)

在这里插入图片描述

安装库版本

这些在r

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值