CUDA学习(一)——如何查看自己CUDA版本?

最近在装pytorch的时候,看到了一个选择CUDA版本的选项
在这里插入图片描述
之前从来没用过CUDA这玩意,当然也不知道CUDA版本啥玩意,于是找了与一下

CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。

关于查看自己电脑上的CUDA版本,首先需要区分CUDA的两种API,即运行时API(Runtime API)和驱动API(Driver API)

1. 驱动API(Driver API)

驱动API(Driver API)由GPU driver installer安装

方法1

如图
在搜索栏搜NVIDIA
在这里插入图片描述

在搜索结果中选NVIDIA Control Panel在这里插入图片描述
双击打开后如图所示
在这里插入图片描述

点击底下的系统信息
在这里插入图片描述

进入后再点击组件
在这里插入图片描述

然后就能看到CUDA版本啦
在这里插入图片描述

方法2

命令行输入nvidia-smi
在这里插入图片描述
右上角的CUDA Version便是CUDA Driver API版本

2. 运行时API(Runtime API)

查看运行时API 版本的前提是已将在电脑上安装了CUDA Toolkit

命令行输入nvcc -V
在这里插入图片描述
最下边一行便是CUDA Runtime API的版本

注意:Driver API和Runtime API可以不同,具体应用要看使用场景

有关二者的不同可以参考这篇文章https://blog.csdn.net/weixin_39518984/article/details/111406728

错误信息 "error LNK2019: 无法解析的外部符号 __imp_clock" 表明在程序中使用了函数 __imp_clock,但编译器和链接器无法找到该函数的定义或实现。这种错误通常是由于缺失符号的定义、编译器搜索路径错误或编译器/链接器选项错误引起的。 解决这个错误的方法有以下几种: 1. 确保包含了正确的头文件:检查代码中是否包含了正确的头文件,特别是包含了声明 __imp_clock 的头文件。如果没有包含正确的头文件,编译器将无法找到函数的定义。 2. 检查编译器的搜索路径:编译器需要知道在哪里查找函数的定义。确保编译器的搜索路径设置正确,以便能够找到函数的定义。可以通过设置编译器的选项或环境变量来修改搜索路径。 3. 检查编译器/链接器选项:检查编译器和链接器的选项设置,确保没有设置错误的选项。有时候,错误的选项设置可能导致编译器无法找到函数的定义。 下面是个示例代码,演示了如何使用函数 __imp_clock: ```c++ #include <iostream> #include <ctime> int main() { std::clock_t start = std::clock(); // 执行些操作 std::clock_t end = std::clock(); double duration = (end - start) / (double) CLOCKS_PER_SEC; std::cout << "程序执行时间:" << duration << " 秒" << std::endl; return 0; } ``` 这段代码使用了函数 std::clock() 来计算程序的执行时间。确保在代码中包含了正确的头文件,并且编译器能够找到函数的定义。
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值