aster.pytorch程序的配置和demo的运行

简介

ASTER是一种具有灵活纠偏机制的精确场景文本识别器,借助pytorch实现
文章地址
代码地址

原理介绍

在这里插入图片描述

环境配置

下载aster.pytorch代码后,进入项目打开命令行输入conda env create -f environment.yml

运行demo.py文件

下载作者提供的预训练模型点击此处
将预训练模型保存在项目目录中(我放在了data目录下)
在这里插入图片描述
打开main_test_image.sh文件,修改–resume后边的路径为保存的demo.pth.tar路径
在这里插入图片描述
在项目根目录中打开git bash,输入命令bash scripts/main_test_image.sh
运行结果如下
在这里插入图片描述
可以看到,demo.png(下图)的识别结果被正常显示出来
demo.png
在这里插入图片描述
运行成功!

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值