玩转FastGPT
文章平均质量分 89
夏天又到了
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
FastGPT工作流的节点
(3)知识库搜索引用合并:当工作流中存在多个“知识库搜索”节点时(例如,同时搜索了“产品库”和“FAQ库”),此节点可以将它们的搜索结果合并成一个统一的引用列表,方便后续节点统一处理。它们就像一块块功能各异的智能乐高积木,有的负责对话,有的负责搜索,有的负责判断,通过将它们拼接在一起,就能搭建出强大的应用。调用底层的大语言模型(如 GPT、文心一言等),根据输入的上下文(如用户问题、知识库片段、历史记录)和设定的提示词(Prompt),进行深度加工和内容生成,最终产生自然流畅的回答。原创 2026-01-04 09:22:52 · 1169 阅读 · 0 评论 -
FastGPT开发一个智能客服案例
在流程开始节点后面,我们接一个“问题分类”节点,如图7-17所示,在其配置页面中,AI模型选择Doubao-1.5-pro-32k模型,背景知识输入“精准识别用户提问意图,区分问候、产品相关和无关问题”,再输入“问候交互”“产品相关问题”“其他”这三个分类。如图7-8所示,首先在主页面上点击页面左侧的“知识库”选项,进入相应的知识库页面。如图7-18所示,在“问题分类”节点后添加一个AI对话节点,并重命名为“问候交互”,AI模型选择Doubao-1.5-pro-32k,提示词输入“与用户进行友好交互”。原创 2025-12-29 10:01:59 · 961 阅读 · 0 评论 -
使用FastGPT知识库构建智能客服的示例
本节将使用知识库来构建一个简单的智能客服,步骤包括创建知识库、在智能客服工作流中使用知识库,以及基于知识库进行智能问答。原创 2025-12-04 10:03:24 · 921 阅读 · 0 评论 -
FastGPT企业知识库介绍
FastGPT采用分层存储结构(库-集合-数据),使用双数据库系统:PostgresSQL处理向量检索,MongoDB存储元数据。其创新性地采用多向量映射机制,通过将单组数据映射到多个向量来平衡内容长度与语义丰富度。在搜索方面,系统结合了语义检索(基于向量相似度)和全文检索,通过RRF算法融合结果,并引入ReRank模型进行精准重排,显著提升了搜索的准确性和全面性。这种混合检索策略有效克服了单一检索方式的局限性,同时多向量设计增强了知识库的数据表达能力。原创 2025-12-03 09:27:24 · 936 阅读 · 0 评论 -
FastGPT版本体系概览
其中,开源版与SaaS版主打轻量化体验,SaaS版作为FastGPT的经典云端方案,基于官方云服务器运行,无须本地部署成本,数据由官方托管,主打便捷性与轻量化体验。开源版、商业版、企业版:均支持本地化部署(单机或集群),数据存储在用户自有服务器,企业可完全掌控数据主权,满足金融、医疗等行业的数据合规要求,适合对数据隐私敏感的企业。商业版作为FastGPT的主流企业级方案,分为轻量版、标准版、专业版、旗舰版,支持单机买断或按年订阅,核心差异体现在用户规模、功能深度与技术支持等级,如表1-1所示。原创 2025-12-02 09:31:16 · 849 阅读 · 0 评论 -
FastGPT的特点与优势
同时,工作流支持与外部系统的联动,通过“HTTP请求”节点对接企业ERP、CRM、MES等系统,实现数据的实时同步与流程的跨系统触发,真正打通AI应用与业务执行的“最后一公里”。企业的数据往往分散在各种格式的文档中,从.txt、.md等轻量文本,到.pdf、.docx等复杂格式,再到.pptx演示文稿、.csv数据表,甚至包含图片、图表的混合文档,这些“数据孤岛”一直是企业知识整合的痛点。FastGPT秉持开放兼容的理念,构建了多模型适配的技术生态,让企业能“按需选择”最适合的模型组合。原创 2025-12-02 09:24:42 · 786 阅读 · 0 评论 -
FastGPT简介
我们将大模型比作“顶级食材”,比如新鲜的龙虾、珍贵的松露,它们本身具备极高的品质,却需要精湛的烹饪技艺才能转换为美味佳肴;从证券机构的财报分析到医院的病历辅助解读,从工厂的设备检修预警到学校的个性化教学辅导,FastGPT正以多元化的应用场景证明着自身的价值。无论是让AI深度理解企业内部的专属知识库,还是搭建贴合复杂业务场景的智能工作流,FastGPT都能轻松实现,让企业无须投入大量资源,从零搭建底层架构,就能快速拥有属于自己的AI能力,真正做到“即插即用”式的高效落地。图1-1 大模型应用开发流程。原创 2025-12-02 09:23:40 · 415 阅读 · 0 评论 -
FastGPT:高效构建企业级大模型应用的利器
FastGPT 是由国内团队开发的一款面向企业场景的大模型应用开发平台。它支持通过可视化界面快速构建基于知识库的问答系统、智能客服、文档助手等应用,并能灵活对接多种主流大语言模型(如 GPT-4、Claude、通义千问、GLM 等)和向量数据库(如 Milvus、Pinecone、Weaviate 等)。FastGPT 的核心理念是“低代码 + 高灵活性”:用户无需编写复杂代码,即可通过拖拽式工作流(Workflow)定义 AI 的推理逻辑,实现从用户提问到答案生成的完整链路定制。原创 2025-12-01 11:48:35 · 523 阅读 · 0 评论 -
【新书推荐】《玩转FastGPT:像搭积木一样构建智能体》
智能体(Agent)是大模型落地应用的重要方向,也是AI应用的一个重要风口。FastGPT是一个企业级 AI Agent 搭建平台,可以基于 LLM 大语言模型搭建 AI 知识库问答系统,提供开箱即用的AI Agent 工具集及大模型调用等能力,并可通过可视化 workflow 编排功能实现复杂的AI应用。本书面向企业级AI Agent应用开发,由FastGPT官方认证技术专家和智能体生态伙伴联手打造。本书配套作者微信群答疑服务、案例文件、演示操作视频、配图PDF文件、PPT课件等。原创 2025-12-01 09:25:07 · 957 阅读 · 0 评论
分享