AI Agent智能体开发
文章平均质量分 83
夏天又到了
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
多智能体框架LangGraph介绍
LangGraph是LangChain生态系统中的多智能体框架,它允许创建多个智能体组成的网络,这些智能体可以相互协作完成复杂任务。LangGraph中的图(Graph)可定义工作流,通过添加节点(智能体)和边(工作流转移)来构建,例如定义Supervisor、Researcher、Emailer等节点,并添加边以协调任务执行。在LangGraph中,“图”表示智能体网络的结构,由节点(智能体/工具)和边(通信路径)组成。状态管理是LangGraph的核心功能之一,确保数据在整个智能体网络中正确流动。原创 2026-01-05 10:38:38 · 575 阅读 · 0 评论 -
LangChain检索增强生成介绍
RAG是一种结合外部知识检索与大语言模型生成的技术。(1)RAG的核心目的是解决LLM的两大痛点:① 知识时效性不足:LLM的训练数据有截止时间,无法回答最新信息(如今年的新政策)。② 幻觉问题:LLM可能生成错误但看似合理的内容(如虚构学术论文并引用)。(2)RAG的工作逻辑是:当用户提出问题时,先从外部知识库(如文档、网页、数据库等)中检索与问题相关的信息,再将这些信息作为“上下文”输入LLM,让LLM基于检索到的事实生成回答。原创 2025-12-22 08:15:23 · 701 阅读 · 0 评论 -
基于RAG的问答智能体实战案例
该项目基于LangChain框架和阿里云DashScope服务,构建了一个支持单轮问答与多轮对话的企业FAQ智能问答系统,整体框架可分为6个核心层级,形成“输入−处理−输出”的完整闭环,如图10.1所示。上面代码封装了阿里云DashScope的大语言模型调用,实现了LangChain的LLM接口,使得阿里云的模型可以无缝集成到LangChain的工作流中。上面代码配置阿里云DashScope服务的API密钥和端点,这是调用阿里云大模型服务的基础。环境配置、数据准备、组件初始化。实现调用阿里云大模型的逻辑。原创 2025-12-24 15:34:09 · 772 阅读 · 0 评论 -
LangChain框架中的智能体
智能代理(Agent)以大语言模型(LLM)为“大脑”,根据用户输入和当前情境,从工具箱中选择合适的工具执行操作,实现自动化决策和行动,可应用于客户服务、智能家居等场景。人工智能代理是一种能够感知环境、自主决策并执行动作的智能程序。在LangChain框架中,智能体可以理解为“能够基于工具和知识库自主执行任务的AI系统”。在LangChain框架中,AI Agent通常由以下几个核心组件构成。工具(Tools):Agent可以调用的功能模块。记忆(Memory):存储历史交互信息。原创 2025-12-24 15:29:43 · 782 阅读 · 0 评论 -
LangChain框架中的记忆
在LangChain框架中,记忆是一种机制,用于存储和检索对话历史或其他上下文信息,使得模型能够“记住”之前的交互内容。RunnableWithMessageHistory是LangChain中用于构建带记忆功能的可运行组件的工具类。BaseChatMessageHistory是LangChain中用于管理消息历史的抽象基类,定义了消息存储和检索的标准接口。本节将详细介绍LangChain框架中的记忆(Memory)系统,包括概念、接口实现和实际应用。基于LangChain的聊天机器人。原创 2025-12-22 08:09:57 · 608 阅读 · 0 评论 -
LangChain表达式语言
RunnableLambda是LCEL中的一个基础组件,用于定义简单的函数转换。它允许你将任意Python函数转换为可运行的组件,以便在LCEL工作流中使用。LCEL(LangChain表达式语言)使用声明式的、简洁的方式来构建和组合LangChain的组件。它提供了更直观的语法,使你能够以类似表达式的方式来定义复杂的工作流程,而不需要编写大量的样板代码。LCEL的核心优势是其简洁性和可读性,尤其适合快速原型开发和小型项目。【示例8.5】一个使用RunnableLambda的示例。原创 2025-12-19 08:52:48 · 331 阅读 · 0 评论 -
LangChain框架的链
在LangChain中,链是将多个组件组合在一起形成一个单一、连贯的工作流程的方式。链可以包含模型调用、数据处理、工具使用等多个步骤,使你能够构建复杂的应用程序。链的特点:把LLM、提示、工具、输出解析等组件按顺序或并行地组装成可复用的执行单元,可独立调用,也可以使用LCEL重新组合。【示例8.4】基础链示例(LangChain+Qwen)。代码执行流程如图8.1所示。图8.1 代码执行流程。原创 2025-12-19 08:41:56 · 478 阅读 · 0 评论 -
LangChain框架的输入输出
语言模型接收提示并生成文本输出,主要分为大语言模型(LLM)和聊天模型(Chat Model)。输出解析器(Output Parser)用于处理语言模型的输出,将其转换为结构化的数据(如JSON、列表等)。LangChain框架的输入输出(I/O)流程是一个标准化的数据处理管道,主要由提示、语言模型和输出解析器三个核心组件构成,它们协同工作实现与语言模型的交互。(1)模板化:使用PromptTemplate将用户输入(如变量)动态嵌入预定义的文本模板(如“解释{term}的概念”)。原创 2025-12-18 11:03:34 · 668 阅读 · 0 评论 -
LangChain框架简介
LangChain是用于开发由语言模型驱动的应用程序的框架,用于开发由大语言模型驱动的应用程序,特别是AI智能体系统。原创 2025-12-18 11:02:29 · 1382 阅读 · 0 评论 -
智能体的记忆与知识管理
(1)谷歌Dialogflow通过“意图识别”和“实体提取”跟踪对话状态:若用户说“明天下午3点订从北京到上海的高铁”,DST会记录“时间=明天下午3点”“出发地=北京”“目的地=上海”“任务=订高铁票”,后续对话中即使用户简化表达(如“改到后天”),智能体仍能关联到“时间”参数进行更新。搜索操作会返回与查询向量最相似的向量的ID和相似度得分。(1)向量索引与搜索:FAISS提供了多种索引和搜索向量的方法,如暴力搜索(Flat)、倒排索引(IVF)、分层可导航小世界图(HNSW)和乘积量化(PQ)等。原创 2025-12-15 10:37:40 · 783 阅读 · 0 评论 -
智能体的感知与理解技术
AI智能体的感知技术是其与外部世界交互的“感官系统”,旨在将物理世界的信号转换为机器可以处理的数字信息。理解技术是AI智能体的“大脑”,负责将感知到的信息转换为语义理解和逻辑推理能力。原创 2025-12-15 10:32:07 · 1206 阅读 · 0 评论 -
智能体的自适应学习
自适应学习是指AI智能体根据环境变化、任务需求或交互数据,动态调整自身行为、策略或模型参数的能力。其目标是实现持续进化,无须人类频繁干预。原创 2025-12-12 11:42:16 · 1036 阅读 · 0 评论 -
智能体的多Agent协同
多Agent系统是由多个自主或半自主的智能Agent组成的系统,这些Agent通过协作来完成单个Agent难以完成的复杂任务。在多Agent系统中,角色分工是关键,不同的Agent承担不同的职责,通过协同工作提高整体效率。原创 2025-12-12 11:49:48 · 1157 阅读 · 0 评论 -
LLM的调用与使用
本节将以ModelScope(魔搭社区)中的Qwen3大模型为例介绍LLM的调用与使用。原创 2025-12-04 10:10:32 · 999 阅读 · 0 评论 -
智能体开发环境安装
Python与AI Agent(人工智能智能体)之间有着密不可分的关系。作为当前人工智能领域主流的编程语言,Python凭借其简洁的语法、丰富的科学计算库(如NumPy、Pandas)以及强大的AI框架支持(如TensorFlow、PyTorch、Hugging Face),成为开发AI Agent的首选工具。AI Agent是能够感知环境、进行决策并采取行动的智能实体,广泛应用于智能对话系统、自动化决策、机器人控制和自主学习系统中。原创 2025-12-03 09:38:52 · 918 阅读 · 0 评论 -
智能体的规划与推理
它推广了流行的“链式思维(Chain of Thought,CoT)”方法,通过允许模型探索作为解决问题中间步骤的连贯文本单元("思想"),使模型能够考虑多种不同的推理路径并自我评估选择。智能体的规划与推理能力是其实现复杂任务的核心,其中Chain-of-Thought(CoT,思维链)、Tree-of-Thought(ToT,思维树)和ReAct框架是三种关键技术。CoT技术显著提升了大型语言模型解决复杂问题的能力,通过展示推理过程增强了模型的可解释性,是当前AI解释性和可靠性研究的重要方向之一。原创 2025-12-01 09:43:28 · 992 阅读 · 0 评论 -
智能体与大模型的关系
例如,在一个智能客服智能体的场景中,大模型可以帮助智能体理解客户用自然语言提出的复杂问题。智能体可以利用大模型的知识来弥补自身知识库的不足。当遇到一些罕见疾病或者新的医疗研究成果相关的问题时,大模型可以提供相关的知识信息,帮助智能体做出更全面的判断。大模型的运行机制主要是基于深度学习算法,通过大量的文本数据训练神经网络,学习语言的规律,然后在给定的输入文本基础上进行语言生成或理解等操作。比如,在用户和智能语音助手进行连续对话时,大模型可以记住前面的对话内容,使智能体能够给出连贯、合理的回答。原创 2025-11-28 10:54:42 · 390 阅读 · 0 评论 -
智能体发展历程
早期的智能体模型相对简单,主要侧重于解决特定领域的问题,例如在专家系统中,智能体利用预先设定的规则和知识库来处理特定领域的知识,为用户提供决策支持。2016年,AlphaGo凭借强化学习战胜人类围棋冠军,展示智能体在复杂环境中的规划能力,智能体在机器人控制、游戏 AI 等领域崭露头角,但对大量标注数据和固定训练环境有依赖。1986年,马文・明斯基提出智能体概念,强调多智能体互动协作,但此时 AI 系统主要依赖预定义规则和符号逻辑,灵活性不足。1950年,图灵测试叩响机器智能大门,为智能体概念奠定基础。原创 2025-11-28 10:53:49 · 410 阅读 · 0 评论 -
《AI Agent智能体开发实践》章节试读
第 1 章 初识智能体。原创 2025-11-28 10:51:24 · 311 阅读 · 0 评论 -
【新书推荐】《AI Agent智能体开发实践》
本书系统介绍AI智能体(Agent)技术原理、开发方法和实践案例。本书从基础概念出发,逐步深入智能体的核心技术、开发框架、开发流程、开发方法和行业应用,帮助读者系统掌握构建高效、智能的AI Agent的关键技能。本书配套示例代码、PPT课件、读者微信技术交流群,示例代码经过测试均可运行无误。原创 2025-11-28 10:47:21 · 1545 阅读 · 0 评论
分享