python中使用pd.to_datetime函数从1970开始的情况

这篇博客介绍了在Python的pandas库中如何处理时间列数据。首先,通过pd.to_datetime转换日期数据,避免了因数据类型为int导致的1970年错误。接着,将日期拆分为年、月、日三列,并展示了如何直接通过时间切片选取DataFrame的部分数据。此外,还提到了使用truncate和loc方法进行时间范围筛选。内容涵盖了DataFrame的时间列操作和时间切片的多种方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python中使用pd.to_datetime函数从1970开始以纳秒计时的情况

dataframe的时间列操作

将图中的日期用pd.to_datetime转为datetime

在这里插入图片描述

yq_df['date'] = pd.to_datetime(yq_df['date'])

使用上面代码之后 时间变成了1970年
在这里插入图片描述

解决办法 修改类型即可

我的原始数据类型为int 所以出现了1970的情况

yq_df['date'] = yq_df['date'].astype('str')
yq_df['date'] = pd.to_datetime(yq_df['date'])

DataFrame从一列datetime提取三列年月日

yq_df['date'] = yq_df['date'].astype('str')
yq_df['date'] = pd.to_datetime(yq_df['date'])
yq_df['year'] = yq_df['date'].dt.year
yq_df['month'] = yq_df['date'].dt.month
yq_df['day'] = yq_df['date'].dt.day
print(yq_df)

结果如下图
在这里插入图片描述

DataFrame中的datetime列时间切片

方法一 直接切片 时间切片即取头也取到尾

 yq_df.index = yq_df['date']
 print(yq_df['2020':'2021'])
 print(yq_df['2020-01':'2020-03'])

方法二 truncate

yq_data = df.truncate('1/1/2020', '2/25/2022')

方法三 loc

yq_data = df.loc[(movie_df_not_null.index > '2020-01-01') & (df.index < '2020-02-25')]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BRYTLEVSON

打赏的都是天使,创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值