- 博客(20)
- 资源 (1)
- 问答 (1)
- 收藏
- 关注
转载 c++中的 lambda函数
最后,这篇文章中也指出,循环遍历一个vector的时候,用for_each加lambda函数要快一些。[=,&foo]截取外部作用域中所有变量,并拷贝一份在函数体中使用,但对变量foo使用引用。[this]截取当前类中的this指针,若已经使用&或者=就默认添加此选项。[bar]截取bar变量且拷贝一份在函数体中使用,同时不截取其他变量。[&]截取外边作用域所有变量,并作为引用在函数体中使用。[=]截取外部作用域所有变量,并拷贝一份在函数体中使用。...
2022-07-26 10:09:22 1617
原创 略读文章topological graph neural networks
略读文章1: topological graph neural networksGNN: oblivious to substructures;TOGL, a novel layer that incorporates global topological information of a graph using homology. (同源性)TOGL can be easily integrated into any type of GNN and is strictly moreexpress
2021-11-18 16:12:02 436
原创 2021-11-05 两种方式安装 doxygen
最近用两种方式在 ubuntu 系统上安装了 doxygen 软件,现记录如下。1: 在 terminal 上直接输入> $sudo apt-get install doxygen> $which doxygen /usr/bin/doxygen > $doxygen -v > 1.8.132: 通过/按照官网提供的方法安装git clone https://github.com/doxygen/doxygen.gitcd doxygenAfter t
2021-11-05 11:50:45 505
原创 用 nslookup 加 网址,当网络 DNS 出现问题的时候
最近网络总是出现一个问号,然后上网速度很慢,甚至是打不开。下面用了一个 Linux 命令来调试。~$ nslookup www.google.com
2021-11-04 14:46:53 2470
原创 measuring publication rates (这里不太懂)
读的文章中有这样一句话:Measuring publication rates There are also two commands for measuring the speed atwhich messages are published and the bandwidth consumed by those messages:rostopic hz topic-namerostopic bw topic-nameThese commands subscribe to the given
2021-10-29 19:18:55 217
原创 nvidia 显卡驱动
:~$ nvidia-settingsERROR: NVIDIA driver is not loadedERROR: Unable to load info from any available system然后查看 home drive, 发现 NVIDIA-Linux…run* 这个文件是存在的。所以,:~$ sudo ./NVIDIA-Linux…run -no-x-check-no-nouveau-check -no-opengl-files Verifying archive .
2021-10-29 15:29:24 1059
翻译 从 ros::Rate loop_rate(10) 说起 2021/10/29
1: ros::Rate loop_rate(10)Rate is a type included inros/ros.hwhich is used to give a specific time period for a task.Thus it has been written as:ROS:: Rate variable_name(time_delay_HZ);You can give any name to your variable they have given loop_r
2021-10-29 15:17:56 2451 1
原创 读文章 using single cell sequencing data to model the evolutionary history of a tumor
这篇文章的关键是如何计算两个 mutation sites 的 mutation order 的后验概率。主要是利用贝叶斯公式。然后再据此构建一个有权重的有向图。利用最小支持树算法找到这个有向图的最小支撑树。这篇文章有两个地方不大清楚。1: 两个 mutation sites xxx 和 yyy 的关系是 x−>yx->yx−>y 或者 y−>xy->xy−>x 或者 xnot<−>yx not <-> yxnot<−>y, 除
2020-10-23 17:23:44 103
原创 马尔可夫链蒙特卡洛
最常见的是,用马尔可夫链的平稳分布,来随机抽样,估计贝叶斯后验概率分布,(因为贝叶斯后验概率解析式相关的量或许不太好计算)。那么如何利用马尔可夫链的平稳分布,来随机抽样呢?这个就需要用到马尔可夫链的一些相关性质。马尔可夫链在满足一些性质的前提下,一直不停迭代下去的话,最终会达到一个平稳状态,这个平稳状态概率分布只跟概率转换矩阵有关。那么如何从平稳状态概率分布,来推出概率转换矩阵呢?我们先来看看马尔可夫链自己的性质。从上面描述可以看出,我们希望找到的马尔可夫链是非周期的,任意两个状态通过有限步可
2020-10-23 09:38:47 414
原创 tree inference for single-cell data ---- part 2
插入一点有关趋同演化的内容:infinite site assumption => each site mutates at most once => 所有相同的变异都同源 (要不然就有可能有一个 site 会有多个 mutations) => 趋同演化不大可能reconstructing mutation histories from real tumor dataapply it to three real single-cell tumor data sets of diff
2020-10-16 17:48:02 114
原创 MCMC采样和M-H采样
本篇主要解决一个问题,对于给定的概率平稳分布 π\piπ, 如何找到与之对应的概率转移矩阵 PPP。这个问题的解决主要是两个方法。MCMC 采样 和 M-H 采样。1: 马尔可夫链的细致平稳条件目标是找到一个矩阵 PPP, 使得 πP=π\pi P=\piπP=π,记此式为式子1。上式的左端的第 jjj 元素是,∑i=0∞πiPi,j\sum_{i=0}^{\infty}\pi_{i}P_{i,j}∑i=0∞πiPi,j; 右端第 jjj 元素是 πj\pi_{j}πj。如果说,可以找到一个
2020-10-15 17:01:30 589
原创 马尔可夫链
参考这篇文章 https://www.cnblogs.com/pinard/p/6632399.html1: 马尔可夫链概述假设序列状态是 … X_{t-1}, X_{t}, X_{t+1}, … , 那么我们在时刻X_{t+1}的状态的条件概率仅仅依赖于时刻X_{t}.“”“既然某一时刻状态转移的概率只依赖于它的前一个状态,那么我们只要能求出系统中任意两个状态之间的转换概率,这个马尔科夫链的模型就定了。”""概率转换矩阵的概念很容易理解。有兴趣可以参考一下 Wiki。比价关心的是,概率转换矩阵和
2020-10-15 14:51:27 576
原创 蒙特卡洛方法
参考这篇文章 https://www.cnblogs.com/pinard/p/6625739.html这篇文章的 motivation 就是计算一个不太好计算的定积分。以为一般情况下,在统计中,只是对概率密度函数求积分的情况比较多;其实有时候,也会对概率分布函数求积分,像是在算数学期望的时候。比如 https://blog.csdn.net/itnerd/article/details/855455241.蒙特卡洛方法引入最初的蒙特卡洛是为了估计一些不太好有解析解的求和或者积分问题。概率里面的求和
2020-10-15 13:54:23 197
原创 读文章 tree inference for single-cell data -- Part 1
摘要:摘要部分从信息熵增益的角度来说,主要是 (1:) maximum-likelihood mutation history / mutation tree estimation;(2:) experimental sequencing error estimation; (3:) reconstruction accuracy improvements.Background:第一段:how tumor evolve with respect to cells;第二段:tumor evolv
2020-10-14 17:10:30 135
原创 MCMC 马尔可夫链蒙特卡洛方法 入门
本篇文章是对下面这篇文章的改写https://www.jiqizhixin.com/articles/2017-12-24-6MCMC 通过在概率空间中随机采样以近似兴趣参数(parameter of interest)的后验分布。注意了,这里不是近似兴趣参数,是近似兴趣参数的后验分布。兴趣参数,是我们感兴趣的一些数字参数。分布是每个参数的可能取值,以及我们以多大可能可以观测到这个可能取值。这个是从 proportion 的角度来理解。在贝叶斯统计中,分布也可以看作是我们对这个参数的信念。这个是从
2020-10-10 11:00:24 829
原创 2020-10-06
最近看到一个视频,说是,在生物信息领域有一个不成文的鄙视链,学数学的位于该链的顶端,然后是学计算机的,然后是学生物的。真的是这样的吗?你怎么看?
2020-10-06 18:38:22 105
原创 2020-10-06
最近在看机器学习,觉得其中的没有免费午餐定理很有趣。我看的是周志华老师的西瓜????书。周老师在这样描述“没有免费午餐”定理的。简而言之,就是说,如果某一类学习器在解决某一类问题上比另一类学习器性能好,那么必定存在另外一些问题,使得在处理这些问题上,第二类学习器的性能要比第一类学习器的性能好。好玩吧?问题的关键是,学习器的偏好(假设)能不能和数据体现出来的特征一致。所以我觉得,把人当作是学习器的话,意思就是说,我们每一个人都是可以有用武之地的,问题的关键在于,自己的特性能否与所在领域的要求相一致,或大
2020-10-06 18:34:04 103
原创 有关信息论和 error-control coding 的简单介绍
信息论有关信息论和 error-control coding 的简单介绍 当一件事情可能有多种可能情况时,这件事情对某人而言,具体是哪种情况的不确定性,叫做熵。而,信息,是消除该人对该事情不确定性的事物(知识)。本问将简单介绍当年香农是如何定义熵的,为什么熵有单位以及各种各样的信息在 comminication channel 上的应用。 一。熵是如何定义的?下面这段内容摘自 https://www.zhihu.com/question/22178202 返朴 的回答。香农的信息熵本..
2020-10-05 18:33:32 699
TA创建的收藏夹 TA关注的收藏夹
TA关注的人