有关信息论和 error-control coding 的简单介绍

本文简要介绍了信息论中的关键概念,包括熵的定义及其性质,强调了当所有基本事件概率相等时不确定度最大。详细阐述了互信息度的概念,解释了其物理意义和性质,并探讨了信息不增原理在通信中的作用。此外,还提及了error-control codes的重要性以及信息与压缩的联系。
摘要由CSDN通过智能技术生成

信息论


有关信息论和 error-control coding 的简单介绍

当一件事情可能有多种可能情况时,这件事情对某人而言,具体是哪种情况的不确定性,叫做熵。而,信息,是消除该人对该事情不确定性的事物(知识)。本问将简单介绍当年香农是如何定义熵的,为什么熵有单位以及各种各样的信息在 comminication channel 上的应用。


一。熵是如何定义的?

下面这段内容摘自 https://www.zhihu.com/question/22178202 返朴 的回答。
香农的信息熵本质上是对我们司空见惯的“不确定现象”的数学化度量。譬如说,如果天气预报说“今天中午下雨的可能性是百分之九十”,我们就会不约而同想到出门带伞;如果预报说“有百分之五十的可能性下雨”,我们就会犹豫是否带伞,因为雨伞无用时确是累赘之物。显然,第一则天气预报中,下雨这件事的不确定性程度较小,而第二则关于下雨的不确定度就大多了。所以,事件对某一观察者而言的不确定性越大,熵就约大。想要消除该不确定性所需的信息就越大。

信息是一个物理量,像质量温度那样的物理量。当年定义质量温度都是先选择一个参照物,定义该参照物的质量为1千克或者温度为0摄氏度,然后再看所需测量的物体的质量和温度,相当于是多少个该参照物。所以,我们测量信息,也需要先选定一个参照物,定义为 1 比特 (或者1纳特),然后再看所需测量的物体的信息(因为信息是消除事件的不确定性的物理量,所以这里即所需测量的事件的不确定性),相当于是多少个该参照物的信息(该参照事件的不确定性)。

二。信息熵具有下面几个性质

1. 我们相信当所有的基本事件机会均等,即都有同样的概率1/n时,其不确定度最大。

对于一般的不确定事件,我们怎样数学地刻画它的不确定程度呢?设想有n个“基本事件”,各自出现的概率分别为p1, p2, …, pn,则它们构成一个样本空间,可以简记为所谓的“概率数组” (p1, p2, …, pn)。样本空间最简单的例子是我们上面提到的抛硬币游戏,它只有两个基本事件:抛硬币结果是“正面朝上”或“反面朝上”,其中每个事件的概率均为 1/2,其对应的样本空间为 (1/2, 1/2)。如果铸币厂别出心裁地将硬币做成两面不对称,使得抛硬币时正面朝上的概率增加到7/10,而反面朝上的概率减少到3/10,则对应的样本空间就是 (7/10, 3/10)。如果我们用符号 H(1/2, 1/2) 来表示第一个样本空间的不确定度,用数 H(7/10, 3/10) 代表第二个样本空间的不确定度,那么直觉马上告诉我们:数 H(1/2, 1/2) 大于数 H(7/10, 3/10),也就是前者比后者更加不确定。

2. H(1/n,1/n, … 1/n) 是自然数 n 的严格递增函数

很好理解,可能的选择越多,越不确定,即不确定性越大。

3. 如果一个不确定事件分解成几个持续事件,则原先事件的不确定度等于持续事件不确定度的加权和。

4. 对固定的自然数n,不确定度函数 H 是 (p1, p2, …, pn) 的一个连续函数。

香农证明了,满足性质 2,3,4 的函数,应该具有下述表现形式。
H(p1, p2, …, pn)

= -C(p1 ln p1 + p2 ln p2 + … + pn ln pn),
具体推导过程以后有时间再修改。

这里加一句,熵用来表示存储或者通讯一个(随机)符号所需要的平均比特长度。熵是对于一个特定的随机变量(概率分布)来说的。所以才会考虑,在什么情况下熵的取值最大或者最小。不确定性越大,熵就越大,克服该不确定性所需的信息量就越大;
不确定性越小,熵就越小,克服该不确定性所需的信息量就越小。

三。 如何理解 mutual information (平均互信息度) ?

以下内容来自 https://blog.csdn.net/BigData_Mining/article/details/81279612
在此转述一遍。

1. 公式上

公式上,两个离散随机变量 X X X Y Y Y 的 互信息 定义为:
I ( X , Y ) = ∑ i , j p ( x i , y j ) log ⁡ p ( x i , y j ) p ( x i ) p ( y j ) I(X,Y) = \sum_{i,j} p(x_i,y_j)\log\frac{p(x_i,y_j)}{p(x_i)p(y_j)} I(X,Y)=i,jp(xi,yj)logp(xi)p(yj)p(xi,yj)
其中, p ( x i , y j ) p(x_i,y_j) p(xi,yj) 是随机变量 X X X Y Y Y 的联合概率分布函数, p ( x i ) p(x_i) p(xi) 是随机变量 X X X 的概率分布函数, p ( y j ) p(y_j) p(yj) 是随机变量 Y Y Y 的概率分布函数。
连续的情形,只需把上面公式的求和改为双重积分就可以。
I ( X , Y ) = ∬ x , y p ( x , y ) log ⁡ p ( x , y ) p ( x ) p ( y ) d x d y I(X,Y) = \iint_{x,y} p(x,y)\log\frac{p(x,y)}{p(x)p(y)} dxdy I(X,Y)=x,yp(x,y)logp(x)p(y)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值