最近在使用过往A股数据进行回测的时候,有一种算法需要遍历数据库内所有的A股数据文件并且进行循环计算,一个让人不快的现象是,越到后面,运算的速度越慢。因此我使用了psutil包跟踪程序所占用的内存。
print (u'内存使用:',psutil.Process(os.getpid()).memory_info().rss)
显示发现,随着我对于个股数据的csv文件遍历打开,我的内存占用从最开始的60Mb飙升到了6Gb,然后我电脑就卡死了
python号称智能管理内存,起码在这次的表现中,它是不合格的。对于这一问题的解决方法也很简单,就是每次循环结束之后将循环中用到的变量清理掉或者是赋值为空。
data.clear()
使用了这么简单的一句代码后,内存占比就掉到了100Mb左右并一直保持到程序结束。
和C语言不同,python在使用变量之前并