数学基础
文章平均质量分 60
buaazyp
这个作者很懒,什么都没留下…
展开
-
卡尔曼滤波(1):离散型卡尔曼滤波器
最近在学习卡尔曼滤波器,在此记录一下自己的思考,作为一个初学者,错漏在所难免。对于某些我们希望知道的状态量而言,他们是真实存在的,但是我们又永远不能得到其精确值,因为在测量和计算中会存在误差,在这种情况下,我们希望能够尽可能得到收敛于目标状态量的数值,这就是卡尔曼滤波器的作用。卡尔曼滤波器不是一个物理滤波器,而是一种数学方法,其作用是通过迭代计算减小噪声误差的影响。其适用范围是测量误差原创 2018-04-03 16:21:17 · 2856 阅读 · 0 评论 -
卡尔曼滤波(2):一个简单的例子
为了说明离散性卡尔曼滤波器的用法,我将用一个最简单的例子来进行说明。假设我们现在对一个房间内的温度进行测试,房间内温度初值为25°c,每过一个时间周期,温度x都将在上一个周期温度的基础上变动于是我们可以建立状态差分方程再假设我们手上有一个误差比较大的温度计(如果误差不大也不需要卡尔曼滤波了),通过温度计,我们可以得到测量值z,我们建立观测方程每当经过一个时间周期,我们用上一周期得到的后验估计量来估...原创 2018-04-04 15:43:41 · 7105 阅读 · 0 评论 -
卡尔曼滤波(3):一种通俗易懂的解释
今天上网看资料,看到一种对卡尔曼滤波的解释很容易理解,在此进行说明.网上资料是这么说的,假设我养了一只猫,有一天我想要知道这只猫有多重,那么我还怎么办呢?我想任何一个正常人的想法都是拿一个称称一下。然而问题在于如果这个称不准呢?比如你第一次称是5kg,第二次就变成了1kg,第三次直接变成了10kg,那么这种情况下我们就不能直接使用称出来的重量了,我们这时候应该换一个准一点的称。然而在工程领域中,很...原创 2018-04-04 20:27:03 · 1522 阅读 · 0 评论 -
卡尔曼滤波(4):拓展卡尔曼滤波
在前面,我们学习了离散型卡尔曼滤波器,我们知道它的本质是对估计量和测量量进行一个加权平均,通过不停的迭代从而使卡尔曼增益更加合理。然而当我们回过头重新检视卡尔曼滤波,发现它用到了大量的线性代数运算,换句话说,只有满足线性的系统才能使用离散卡尔曼滤波。然而在实际工程应用中,系统内总是存在着非线性关系,例如平方关系,三角函数关系,指数对数关系等,我们应该怎样处理这样的问题呢?我们已经知道,在卡尔曼...原创 2018-04-05 11:42:09 · 1723 阅读 · 2 评论 -
卡尔曼滤波(5):一种用EKF解决问题的思路
这是书上给出的一个例子,我希望从中能归纳一种套路可以用在 大部分EKF问题中一:建立数学模型(一):建立状态方程状态方程是由具体问题的物理意义抽象出来的,不同问题具有不同的状态方程,本文为了说明问题使用的状态方程为(二):建立观测方程观测方程也是由实际物理意义抽象出来的,本文使用的观测方程为(三):一阶线性化状态方程,求状态转移矩阵F(k)。(其实就是把状态方程求偏导的过程)(四):一阶线性化观测...原创 2018-04-07 10:42:43 · 4576 阅读 · 2 评论 -
最小二乘法
最小二乘法又名最小平方法,是一种用于估计和拟合的计算方法。我结合加权平均估计的思想做个简单介绍。假设有两个测量量x1,x2。我们希望得到一个估计量x=t*x1+(1-t)*x2使其最接近实际x0值,理论上t取0到1之间的任何数都可以,我们怎样能够从所有可能性中得到一个最好的t呢?从中学数学知识我们可以知道,一个数的平方只可能是正数或者0,那么我们可不可以认为,当几个平方相加得到的数字最小的时候,系...原创 2018-05-21 11:23:27 · 251 阅读 · 0 评论 -
已知参数方程,求解当前曲率e
一:问题描述已知当前轨迹参数方程,求曲率K对于参数t的参数方程二:求解已知曲率,其中s是弧长,是切线的斜率(一):求(二):求(三):联立求解解得...原创 2018-09-11 11:19:15 · 7900 阅读 · 0 评论 -
使用线性代数求解斐波那契数列第n项
一:问题已知斐波那契数列,f1=1,f2=1,f3=3,f4=5...求第n项的数值二:问题转化为线性代数问题可以得到方程f(n+2)=f(n+1)+f(n)为了解决问题,添加方程f(n+1)=f(n+1)记向量,则上两式可以写作要求,只需知道,例如,要求n=100时的数值三:将矩阵相似对角化可以得到矩阵的两个特征值为,,对应的变化矩阵为A,则...原创 2018-09-03 18:26:55 · 3414 阅读 · 0 评论