机器学习吃瓜教程——西瓜书+南瓜书第1、2章

第一章 绪论

1.基本术语

假设空间 版本空间:拟合训练集的模型(假设)的集合

样本:对于一个事件的描述 

样本空间

特征(属性):向量中的各个维度

标记:样本在某个方面的变现是否存在潜在规律

标记空间

机器学习任务分类:

     (1).离散——分类  连续——回归 

     (2).监督学习 无监督学习——聚类

关于模型:

泛化能力:对未知事物判断是否准确

分布:样本空间服从某种分布  

归纳偏好

奥卡姆剃刀原理

没有免费的午餐定理

第二章 模型评估与选择

一、如何划分训练集和测试集

1.留出法

2.交叉验证法

特殊地,留一法

二、如何评估模型性能

1.精准率

召回率

F1

2.ROC和AUC

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值