数学物理方程期末题型汇总

文章详细整理了各类偏微分方程的解法,包括波动方程的初值问题(一维齐次与非齐次)、热方程的初值问题,以及双曲和抛物方程的混合问题。涵盖了齐次与非齐次条件,使用了达朗贝尔公式、杜哈梅原理、分离变量法等技术。同时,介绍了椭圆方程中的格林函数和无界泊松方程的解法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本文章为自己期末考试复习整理的内容,其中的一些数字代号仅方便自己对方程类型分类,仅可借鉴。

章一:基本问题

简答

①三类边界条件
②定解问题分类
③解的适定性

定解问题=范定方程+定解条件
定解条件:初始条件、边界条件

定解问题的分类:

  1. Cauchy/初值问题:只有初始条件,没有边界条件。常常处理无界的问题
  2. 边值问题:没有初始条件,只有边界条件。常常处理狄氏问题,如稳定的温度场。
  3. 混合问题:有初始条件和边界条件。

解的适定性(1/3)
(1)存在性:定解问题至少存在一个解
(2)唯一性:定解问题至多有一个解
(3)稳定性:

证明:是否满足解的适定性(1/3)

章二:二阶

计算

二阶方程的特征、分类(双变量四个例题(一个求特征,三个化标准型)
在这里插入图片描述
①判断方程类型 (判别式:∆=b2-ac)
②求特征方程特征线
二阶偏微分方程对应的特征方程:
在这里插入图片描述
特征线:dy/dx积分
③化标准型
作变换:
∆=b2-ac>0,两组特征线,作变换§=ŋ=,化为标准型:u§ŋ=Du§+Euŋ+Gu+F(§, ŋ)
∆=b2-ac=0,一组特征线,作变换§=ŋ=y
∆=b2-ac<0,两组复特征线,作变换§=ŋ=
多变量xyz(ppt例五)

章三:波动方程/双曲方程

在这里插入图片描述

(一)初值问题

1.一维齐次

  • 无界弦的自由振动问题----------达朗贝尔公式/行波法

在这里插入图片描述
在这里插入图片描述
达朗贝尔公式:
特点:齐次,原、偏导初值都不为0
延伸问题:求决定区间、影响域
①特征线
一维波动方程的特征方程是:dx/dt=±a
则特征线为 x±at=C
过点(x0,t0)的两条特征线为 x+at=x0+at0 x-at=x0-at0
②依赖区间
u只依赖于初始函数φ与ψ在区间 x0-at0到x0+at0 上的取值
称[x0-at0,x0+at0]为点(x0,t0)的依赖区间
③决定区域
过点[x1,0] 做两条特征线 x+at=x1 x-at=x1
过点[x2,0] 做两条特征线 x+at=x2 x-at=x2
会有两条特征线交到一起,这个三角形区域称为[x1, x2]的决定区域
即定义在[x1, x2]上的初始函数φ与ψ,决定该三角形区域内的u
④影响区域
会有两条特征线未交到一起,这个区域称为[x1, x2]的影响区域
即定义在[x1, x2]上的初始函数φ与ψ,影响该区域内的u
在这里插入图片描述
在这里插入图片描述

从达朗贝尔公式还可以看出,解在点的数值仅依赖于轴上区间内的初始条件,而与其他点的初始条件无关。区间称为点的依赖区间。它是由过点的两条斜率分别为的直线在轴所截得的区间((a))。
对初始轴上的一个区间,过点作斜率为 的直线 ,过点作斜率为的直线 ,它们和区间一起构成一个三角形区域((b)),此三角形区域中任一点 的依赖区间都落在区间 的内部,因此解在此三角形区域中的数值完全由区间上的初始条件决定,而与此区间外的初始条件无关,这个三角形区域称为区间的决定区域,在上给定初始条件,就可以在其决定区域中决定初值问题的解。
若过点分别作直线 ,则经过时间后受到区间上初始扰动影响的区域为,在此区域之外的波动不受上初值扰动的影响,称平面上由上述不等式确定的区域为的影响区域(如图(c))。

例 求下列柯西问题:
在这里插入图片描述
请添加图片描述
请添加图片描述

  • 一维齐次+初值(00)=0-----------------------------达朗贝尔
    请添加图片描述

  • 一维齐次+初值(01)----------------------------特征线法/代换法
    特点:齐次,原函数初值=0,偏导初值不为0

    请添加图片描述

  • 一维齐次+初值(10)----------------------------------达朗贝尔
    在这里插入图片描述

2.一维非齐次

齐次化原理/冲量原理/外力化初速度原理--------- 用于求解非齐次式

  • 一维非齐次+初值(00)----------------杜哈梅原理

在这里插入图片描述
特点:非齐次,原、偏导初值都=0

无界弦强迫振动的定解问题------利用杜哈梅原理(齐次化原理)求解

  • 一维非齐次+初值11---------------------------------拆分+套公式

在这里插入图片描述
特点:非齐次,初值都不为0
方法:拆分叠加+齐次化原理
将该定解问题分解为两个子定解问题
在这里插入图片描述
子问题1直接求解得u1,子问题2利用杜哈梅原理求解得u2,u=u1+u2
在这里插入图片描述
该解称为无限长弦的受迫振动的达朗贝尔公式

3.二维齐次

  • 二维齐次+初值11-----------------由三维降阶,泊松公式直接套

在这里插入图片描述
在这里插入图片描述

【题目】求解二维波动方程
在这里插入图片描述

例题:下面举一个例子,说明二维泊松公式的用法
在这里插入图片描述
附上解法,即令 z=x2(x+y),求解出关于z的达朗贝尔公式,再将 z=x2(x+y)带入
在这里插入图片描述

4.二维非齐次

  • 二维非齐次+初值11--------------------------套公式
    在这里插入图片描述在这里插入图片描述

5.三维齐次

  • 三维齐次+初值11-----------------泊松方程解,直接套公式

请添加图片描述

下面举一个例子,说明三维泊松公式的用法。
例 设已知 ,在这里插入图片描述,求方程(3.22)相应柯西问题的解。
在这里插入图片描述
解 将给定的初始条件 在这里插入图片描述在这里插入图片描述代入(3.31),得到所要求的解为
在这里插入图片描述

6.三维非齐次

  • 三维非齐次+初值11-------------------------------套公式

在这里插入图片描述
定解,由杜哈梅原理和三维波动泊松公式求解
在这里插入图片描述

(二)半无界问题(初始条件+1边界条件)---------开拓法

在这里插入图片描述
对于第一边界条件:
在这里插入图片描述
对于第二类边界条件
在这里插入图片描述
解的性质
在这里插入图片描述

(三)混合问题(初始条件+2边界条件)-----分离变量法

1.齐次+初值11+边界00----------一维两端固定----分离变量法(ppt只有这一类)

在这里插入图片描述

例1 设有一根长为10个单位的弦,两端固定,初速度为零,初始位移为 ,求弦作微小横向振动时的位移。 在这里插入图片描述
解:设位移函数为u(x,t),它是定解问题
在这里插入图片描述
的解。这时l=10,并给定 (这个数字与弦的材料,张力有关)。
显然,这个问题的Fourier级数形式解可由(2.11)给出,其系数按(2.12)式为在这里插入图片描述在这里插入图片描述因此,所求的解为在这里插入图片描述
例2 解定解问题
在这里插入图片描述
解 这里所考虑的方程仍是(2.1),所不同的只是在x=l这一端的边界条件不是第一类齐次边界条件 ,而是第二类齐次边界条件 。因此,通过分离变量的步骤后,仍得到方程(2.4)与(2.5) , ,但条件(2.6)应代之以
请添加图片描述请添加图片描述

2.齐次+初值11+边界11-----------------------边界齐次化–代换

在这里插入图片描述
特点:齐次,初始条件+边界值x=0,x=l时方程不为零(边界不为0)
令v=u(x,t)−w(x,t)

3.非齐次+初值11+边界00---------------弦的强迫振动为例

在这里插入图片描述
特点:非齐次,初始条件+边界值=0(两端固定)
方法:
在这里插入图片描述

例 在环形域 内求解下列定解问题:
在这里插入图片描述
请添加图片描述请添加图片描述
请添加图片描述

4.非齐次+初值11+边界11

请添加图片描述
请添加图片描述
例1 求下列定解问题:(非齐次+初值00+边界01)
请添加图片描述请添加图片描述

5.二维齐次+初值11+边界00-------------------------分离变量法

在这里插入图片描述
特点:齐次,初始条件+边界条件=0(固定端点)在这里插入图片描述

章四:热方程/抛物方程

(一)初值问题

1.齐次(ppt:Cauchy问题1-2)

在这里插入图片描述在这里插入图片描述在这里插入图片描述称为问题(1)的Poisson公式

例;
在这里插入图片描述在这里插入图片描述注需要用到高斯积分 在这里插入图片描述

2.非齐次(ppt:Cauchy问题3)

在这里插入图片描述请添加图片描述

(二)混合问题

混合问题的流程没有按波动方程的分类流程,而是按照在原问题非齐次方程(1)/(7)的基础上一步步拆分,讨论其子问题(2)-(5)/(8)-(10)的求解进而求得。

(ppt:混合问题1)半直线,细杆一端固定,已知初始温度以及细杆固定端温度,则杆上的温度分布满足如下混合问题:

  • (初值1+边界_1)---------------------------------非齐次+第一边值问题

请添加图片描述
边界齐次化令v(x,t)=u(x,t)-µ(t)
则:
请添加图片描述原问题拆分为
请添加图片描述

  • (初值1+边界0_)------------------------------(齐次+第一边值问题),解同齐次初值问题(泊松方程)

请添加图片描述
请添加图片描述

  • (初值1+边界_0)-------------------齐次+第二边值问题

请添加图片描述

  • (初值1+边界_1)-------------------非齐次+第二边值问题

请添加图片描述

(以上为一端固定)一个边界条件u(0,t)/ux(0,t)
------------------------------------------------------------------------------------**
(以下为两端固定)两个边界条件u(0,t)+u(l,t)/ux(0,t)+ux(l,t)

(ppt混合问题2)有限区间上的热传导方程-------------分离变量法

请添加图片描述

(初值1+边界11)--------------(非齐次+第一边值问题11)分离变量法
请添加图片描述

(ppt混合问题3

请添加图片描述

章五:椭圆方程

1.半空间的格林函数

请添加图片描述

请添加图片描述

2.球域的格林函数

请添加图片描述

请添加图片描述
请添加图片描述

3.求解二维无界泊松方程

在这里插入图片描述
在这里插入图片描述

4.镜像法求格林函数

镜像法法求上半平面第一类泊松方程

在这里插入图片描述

例题:求解圆域内泊松方程的第一类边值问题
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值