在科普书—–数学书的天平上,这本书偏向数学书多些
总的来说还是不错的,但是里面很多“不难证明”能写出证明就好了,毕竟现在书还挺薄
第一部分 解三次和四次方程式的故事
第三章 三次方程和四次方程的根式求解
这一部分可以作为学完二次方程根式求解以后的补充读物
第二部分 向五次方程进军
第四章 有关方程的一些理论
4.2的牛顿定理没有证明,直接假定成立即可,这本书中有不少是这样的,感觉作为科普书,不是很好,相当于是一个跳跃。
第五章 范德蒙与他的“根的对称式表达”方法
这一章看起来就不是很容易理解了,第5章和后面的第6章,都有这种感觉,感觉很奇妙,但是,他们是怎么想到这样求解的呢,感觉更多是技巧,他们用技巧解决了3/4次方程求解,没有发现5次方程求解“技巧”。
第六章 拉格朗日与他的预解式方法
这一章与上一章类似,拉格朗日解法解2次3次的方法感觉都有点是技巧,但是4次就没那么简单了,所以文中也没说,然后就说5次解不出来,第一次看的时候感觉莫名其妙的。感觉这种情况书中应该说明的,这些是技巧,不是一步一步推导出来的。
第七章 高斯与代数基本定理
代数基本定理没有给出证明,这一章看完没明白主要想说啥,可能主要是为了说存在性。
第三部分 一些数学基础
第九章 集合与映射
定理9.6.2的证明感觉把重要的简化掉了,那2个不难证明,感觉不容易证明呀。