从一元一次方程到伽罗瓦理论_多项式的根,和一般一元五次以上方程的不可解...

这篇博客探讨了从一元一次方程到伽罗瓦理论,阐述了复数域的代数闭合性和克罗内克定理。文章通过实数与复数的构建过程,解释了代数基本定理,特别是利用刘维尔定理证明。还讨论了一元五次以上方程无根式解的原因,关联到伽罗瓦群的可解性,揭示了四次及以下方程存在根式解的数学原理。
摘要由CSDN通过智能技术生成

假设f是一个系数为整数的多项式。根据代数基本定理,复数是一个代数闭合域,也就是说所有系数为复数的多项式都在复数中有所有根。所以f当然在复数中有所有根。可以把f写作f=(x-α_1)……(x-α_n),α_i为f的根。显然,如果对α_i进行置换,比如α_1→α_2,α_2→α_1,置换下的f肯定是不变的。

克罗内克以其“上帝创造了整数,其余都是人的工作”的信条出名。其中一个原因是以他命名的定理:如果F是一个域而f是多项式环F[x]中的一个非常数多项式,则存在扩域E/F使得对于E中某α我们有f(α)=0。

证明:假设p是f的一个不可约因式,我们只要找到这样一个E和α使得p(α)=0即可。因为p不可约,(p)这个理想在F[x]中是最大,所以F[x]/(p)是一个域。这就是我们要找的E。其中,可以定义α=x+(p)。那么,将α代入p这个多项式时,就有p(α)=p+(p)=0。

克罗内克以此认为所有数都由此而来。但我们知道存在超越数,即不是任何整数系数多项式的根的数,例如pi,e。实际上,代数数(即所有是整数系数多项式的根的数,即有理数的代数闭合)在复平面上只集中在一块很小的区域。复平面几乎全都不是代数数。

3ca32441174fd224dddf5afc9a20edb7.png

Algebraic numbers colored by degree (blue = 4, cyan = 3, red = 2, green = 1). The unit circle is black. (可以想一下为什么单位圆用黑色记)

4d96da0f59cf8505087538754980a0fd.png

Algebraic numbers on the complex plane colored by degree (re

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值