1 概率模型中的推理
1 概率推理
2 基本图概念
3 信度网络
4 图模型
5 树中的高效推理
6 图算法连接
7 决策
2 用概率模型学习
8 机器学习中的统计学
9 作为推理的学习
10 朴素贝叶斯
11 基于隐藏变量饿学习
12 贝叶斯模型选择
3 机器学习
13 机器学习的概念
14 近邻归类
15 非监督线性降维
16 监督线性降维
17 线性模型
18 贝叶斯线性模型
19 高斯处理
20 混合模型
21 隐藏线性模型
22 隐藏能力模型
4 动态模型
23 离散状态马尔科夫模型
24 连续状态马尔科夫模型
25 切换线性动态系统
26 分布式计算
5 近似推理
27 采样
28 确定性近似推理
6 附录
A.1 线性代数
A.2 多变量微积分
A.3 不等式
A.4 优化
A.5 多元优化
A.6 拉格朗日法进行限制性优化