【机器学习】线性回归-波士顿房价预测

from sklearn import datasets # 数据集
from sklearn.model\_selection import train\_test\_split
from sklearn import linear\_model
import matplotlib.pyplot as plt 
boston = datasets.load\_boston() # 波士顿房价数据
boston

# 创建训练集 与 测试集
x\_train,x\_test,y\_train,y\_test = train\_test\_split(boston.data,boston.target,test\_size=0.1,random\_state=42)
print(x\_train.shape,x\_test.shape,y\_train.shape,y\_test.shape)  
  

# 训练数据
linreg = linear_model.LinearRegression()
linreg.fit(x_train, y_train)

得出预测值

 y\_pred = linreg.predict(x\_test)  
 y\_pred

plt.figure(figsize=(10,6)) # 设置大小
plt.plot(y\_test,linewidth\=3,label='Actual') 
plt.plot(y\_pred,linewidth\=3,label='Prediction')

# 显示上面设置的名字与底部
plt.legend(loc='best')
plt.xlabel('test data point')
plt.ylabel('target value')  

plt.plot(y\_test,y\_pred,'o')  
plt.plot(\[-10,60\],\[-10,60\],'k--')  
plt.axis(\[-10,60,-10,60\])

plt.xlabel('Actual')  
plt.ylabel('Prediction')

最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值