前言
在进行模型应用时,关注的指标有很大的区别,根据关注的指标做机器的缩扩容,和模型压缩量化。
那么,模型的指标一般包括时延、吞吐量、参数量、激活值、MAC、FLOP、FLOPS、OP、OPS:
-
延迟(Latency): 处理一次任务的时间;
-
吞吐量(Throughput): 可以同时处理任务的数量;
-
参数量(Parameters): 由模型结构决定;
-
激活值(Activate): 特征参数,与特征图大小,batch 大小有关;
-
MAC: Multiply accumulate operation,是一次乘法与一次加法累加;
-
FLOP: floating point operation 的缩写,浮点运算;
-
FLOPS: floating point operation per second 的缩写,每秒可以进行的浮点运算;
-
OP: operations,运算;
-
OPS: operation per second,每秒进行的运算数;
每个参数如何计算,下面以 CNN 为例做详细说明。
1、各参数细讲
(1)Latency & Throughput
高吞吐量一定低延迟吗?低延迟一定是高吞吐量吗?答案显然是不一样,只是考虑的场景不同。
移动端更关心延迟,数据中心更关心吞吐量。影响 Latency 的两个因素,一个是计算量,一个是内存。
(2)Parameters & model size
对于 CNN 的单层模型,输出 X 的维度是 [ci,hi,wi],卷积核大小 [ci,kh,kw],通道数是 co。
所以卷积层的参数量是:
上述参数求和大约是 61M,模型大小与参数量和每个参数的大小有关。
常用 Bit Width 有 float32、float16、int8、int4。以 float32 为例。AlexNet 的 model size 是 61*4=244M。
(3)Activations
参数量与模型大小有关,激活值与峰值激活值才是模型推理和计算的瓶颈,并且对于 CNN 这种网络,前几层的激活值内存比较大(因为特征图大),后几层小,存在不均衡问题。
峰值激活值一旦超过 SRAM 的大小,则需要频繁的数据搬运,这非常耗时(主存中数据搬运的耗时远远大于计算的耗时)。
收到 batch 等影响,激活值一般比模型参数占内存大,他们的变换趋势如下。一般前几层激活值占内存大,或几层是网络参数站内存大。
(4)MAC
Multiply accumulate operation,是一次乘法与一次加法累加 𝑎←𝑎+𝑏∗𝑐a \leftarrow a + b*c 。
对于 A(mxn)和 B(nxk)两个矩阵相乘的 MAC 是 𝑚∗𝑛∗𝑘m*n*k。
对于 CNN 的单层模型,输出 X 的维度是 [ci,hi,wi],卷积核大小 [ci,kh,kw],通道数是 co。
所以卷积层的参数量是:
AlexNet 大于是 7.24 亿的 MAC。
(5)FLOP & FLOPS
FLOP 浮点运算,一个 MAC 等于两个 FLOP,所以 AlexNet 是 1.4G FLOPs。
FLOPS 是没秒进行浮点运算,是一个硬件指标:
(6)OP & OPS
OP 是 FLOP 的扩充,不只是浮点运算,所有的运算都包括,包括整数运算、掩码运算等等都属于 OP。OPS 是每秒进行的 OP 数。
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】