求解多目标优化问题的邻域采样和代理辅助进化算法


前沿

我写这篇文章的目的纯粹是为了阅读文献做笔记。第一次写,因为还不熟练,有很多不足之处请多指教。


文献引用

@article{Yi_2021,
title = {Neighborhood samples and surrogate assisted multi-objective evolutionary algorithm for expensive many-objective optimization problems},
volume = {105},
issn = {1568-4946},
url ={https://www.sciencedirect.com/science/article/pii/S1568494621001915},
doi = {https://doi.org/10.1016/j.asoc.2021.107268},
language = {en},
journal = {Applied Soft Computing},
publisher = {Applied Soft Computing},
author = {Yi Zhao and Jianchao Zeng and Ying Tan},
year = {2021},
pages = {107268},
}

Abstract

Many surrogate-assisted meta-heuristic algorithms have been proposed for single-objective expensive optimization problems, however, not so much attention has been paid to multi-objective expensive problems, especially for those with more than four objectives. In this paper, we use reference vector guided evolutionary algorithm (RVEA) to select suitable individuals, and radial basis function (RBF) networks are used to estimate the fitness of the original objective function to reduce the computational cost. These suitable individuals are optimized by the RBF network for several iterations. Then in surrogate model management, an infill strategy is proposed to select promising individuals for exact evaluations. Euclidean distance to origin or uncertainty is adaptively considered, according to the convergence degree of the current population in the infill strategy. The approximation uncertainty of each solution is calculated according to its distance to the modeling samples in the decision space. The experimental results on a number of many-objective optimization problems showed that the proposed met

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值