Neighborhood samples and surrogate assisted multi-objective evolutionary algorithm for expensive many-objective optimization problems
前沿
我写这篇文章的目的纯粹是为了阅读文献做笔记。第一次写,因为还不熟练,有很多不足之处请多指教。
文献引用
@article{Yi_2021,
title = {Neighborhood samples and surrogate assisted multi-objective evolutionary algorithm for expensive many-objective optimization problems},
volume = {105},
issn = {1568-4946},
url ={https://www.sciencedirect.com/science/article/pii/S1568494621001915},
doi = {https://doi.org/10.1016/j.asoc.2021.107268},
language = {en},
journal = {Applied Soft Computing},
publisher = {Applied Soft Computing},
author = {Yi Zhao and Jianchao Zeng and Ying Tan},
year = {2021},
pages = {107268},
}
Abstract
Many surrogate-assisted meta-heuristic algorithms have been proposed for single-objective expensive optimization problems, however, not so much attention has been paid to multi-objective expensive problems, especially for those with more than four objectives. In this paper, we use reference vector guided evolutionary algorithm (RVEA) to select suitable individuals, and radial basis function (RBF) networks are used to estimate the fitness of the original objective function to reduce the computational cost. These suitable individuals are optimized by the RBF network for several iterations. Then in surrogate model management, an infill strategy is proposed to select promising individuals for exact evaluations. Euclidean distance to origin or uncertainty is adaptively considered, according to the convergence degree of the current population in the infill strategy. The approximation uncertainty of each solution is calculated according to its distance to the modeling samples in the decision space. The experimental results on a number of many-objective optimization problems showed that the proposed met